forked from probml/pyprobml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfoo.py
executable file
·57 lines (51 loc) · 1.8 KB
/
foo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Nov 4 12:48:00 2020
@author: kpmurphy
"""
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_classification, make_blobs
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LogisticRegression
import matplotlib.colors as mcol
import os
degree = 4
# C =1/lambda, so large C is large variance is small regularization
C_list = [1e0, 1e4]
plot_list = C_list
err_train_list = []
err_test_list = []
w_list = []
for i, C in enumerate(C_list):
transformer = PolynomialFeatures(degree)
name = 'Reg{:d}-Degree{}'.format(int(C), degree)
XXtrain = transformer.fit_transform(Xtrain)[:, 1:] # skip the first column of 1s
model = LogisticRegression(C=C)
model = model.fit(XXtrain, ytrain)
w = model.coef_[0]
w_list.append(w)
ytrain_pred = model.predict(XXtrain)
nerrors_train = np.sum(ytrain_pred != ytrain)
err_train_list.append(nerrors_train / ntrain)
XXtest = transformer.fit_transform(Xtest)[:, 1:] # skip the first column of 1s
ytest_pred = model.predict(XXtest)
nerrors_test = np.sum(ytest_pred != ytest)
err_test_list.append(nerrors_test / ntest)
if C in plot_list:
fig, ax = plt.subplots()
plot_predictions(ax, xx, yy, transformer, model)
plot_data(ax, Xtrain, ytrain, is_train=True)
#plot_data(ax, Xtest, ytest, is_train=False)
ax.set_title(name)
fname = 'logreg_poly_surface-{}.png'.format(name)
save_fig(fname)
plt.draw()
plt.figure()
plt.plot(C_list, err_train_list, 'x-', label='train')
plt.plot(C_list, err_test_list, 'o-', label='test')
plt.legend()
plt.xlabel('Inverse regularization')
plt.ylabel('error rate')
save_fig('logreg_poly_vs_reg.png')