forked from probml/pyprobml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhbayes_bernoulli_bap_pymc3.py
executable file
·84 lines (60 loc) · 1.98 KB
/
hbayes_bernoulli_bap_pymc3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# From chapter 2 of
# https://github.com/aloctavodia/BAP
import matplotlib.pyplot as plt
import scipy.stats as stats
import numpy as np
import pandas as pd
import seaborn as sns
import pymc3 as pm
import arviz as az
np.random.seed(123)
# Example from BAP
N_samples = np.array([30, 30, 30])
G_samples = np.array([18, 18, 18]) # [3, 3, 3] [18, 3, 3]
group_idx = np.repeat(np.arange(len(N_samples)), N_samples)
data = []
for i in range(0, len(N_samples)):
data.extend(np.repeat([1, 0], [G_samples[i], N_samples[i]-G_samples[i]]))
with pm.Model() as model_h:
μ = pm.Beta('μ', 1., 1.)
κ = pm.HalfNormal('κ', 10)
θ = pm.Beta('θ', alpha=μ*κ, beta=(1.0-μ)*κ, shape=len(N_samples))
y = pm.Bernoulli('y', p=θ[group_idx], observed=data)
trace_h = pm.sample(1000)
az.plot_trace(trace_h)
#plt.savefig('B11197_02_20.png', dpi=300)
az.summary(trace_h)
J = len(N_samples)
post_mean = np.zeros(J)
samples = trace_h['θ']
post_mean = np.mean(samples, axis=0)
post_hyper_mean = trace_h['μ'].mean()
mle = G_samples / N_samples
pooled_mle = np.sum(G_samples) / np.sum(N_samples)
axes = az.plot_forest(
trace_h, var_names='θ', combined=False, colors='cycle')
y_lims = axes[0].get_ylim()
axes[0].vlines(post_hyper_mean, *y_lims)
axes = az.plot_forest(
trace_h, var_names='θ', combined=True, colors='cycle',
kind='ridgeplot')
# Show posterior over hparans
fig, ax= plt.subplots(1,1)
x = np.linspace(0, 1, 100)
for i in np.random.randint(0, len(trace_h), size=100):
u = trace_h['μ'][i]
k = trace_h['κ'][i]
pdf = stats.beta(u*k, (1.0-u)*k).pdf(x)
ax.plot(x, pdf, 'C1', alpha=0.2)
u_mean = trace_h['μ'].mean()
k_mean = trace_h['κ'].mean()
dist = stats.beta(u_mean*k_mean, (1.0-u_mean)*k_mean)
pdf = dist.pdf(x)
mode = x[np.argmax(pdf)]
mean = dist.moment(1)
ax.plot(x, pdf, lw=3, label=f'mode = {mode:.2f}\nmean = {mean:.2f}')
ax.set_yticks([])
ax.legend()
ax.set_xlabel('$θ_{prior}$')
plt.tight_layout()
#plt.savefig('B11197_02_21.png', dpi=300)