forked from pytorch/FBGEMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
GroupwiseConvAcc32Avx512.cc
283 lines (269 loc) · 10.2 KB
/
GroupwiseConvAcc32Avx512.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#define FBGEMM_EXPORTS
#include <asmjit/asmjit.h>
#include "./CodeGenHelpers.h"
#include "./GroupwiseConv.h"
namespace fbgemm {
using namespace std;
namespace x86 = asmjit::x86;
GCONV_INST_DEF_AVX512_AND_VNNI_HEADER
GenConvKernel<SPATIAL_DIM, INST_SET>::genConstForPermutations(x86::Emitter* a) {
x86::Gp permute_const_reg_upper_half = a->gpz(12);
x86::Gp permute_const_reg_lower_half = a->gpz(13);
x86::Xmm const_reg_xmm = x86::xmm11;
if (this->C_per_G_ == 4) {
// 4 group together
// We have 1st group in position 0 and 4, 2nd group 1 and 5 and so on.
// Permute to put 1st group to lower 128-bit and 2nd group to next
// 128-bit and so on.
// load f, b, 7, 3,
// e, a, 6, 2,
// d, 9, 5, 1,
// c, 8, 4, 0 in a 128-bit Xmm
a->mov(
permute_const_reg_lower_half,
static_cast<asmjit::Imm>(0x0d0905010c080400));
a->mov(
permute_const_reg_upper_half,
static_cast<asmjit::Imm>(0x0f0b07030e0a0602));
} else {
// this->C_per_G_ == 2
// 8 group together
// We have 1st group in position 0 and 8, 2nd group 1 and 9 and so on.
// Permute to put 1st group to lower 128-bit and 2nd group to next
// 128-bit and so on.
// load
// f, 7
// e, 6
// d, 5
// c, 4
// b, 3
// a, 2
// 9, 1
// 8, 0 in a 128-bit Xmm
a->mov(
permute_const_reg_lower_half,
static_cast<asmjit::Imm>(0x0b030a0209010800));
a->mov(
permute_const_reg_upper_half,
static_cast<asmjit::Imm>(0x0f070e060d050c04));
}
a->movq(const_reg_xmm, permute_const_reg_lower_half);
a->pinsrq(const_reg_xmm, permute_const_reg_upper_half, 1);
// Zero extend 16 packed 8-bit integers in the low 8 bytes of const_reg_xmm
// to 16 packed 32-bit integers in stPermReg_V_
a->vpmovzxbd(stPermReg_V_, const_reg_xmm);
}
GCONV_INST_DEF_AVX512_AND_VNNI_HEADER
GenConvKernel<SPATIAL_DIM, INST_SET>::genForLoadingWeights(x86::Emitter* a) {
using WRegs = x86::Zmm;
int paddedICPerG = (this->C_per_G_ + 3) / 4 * 4;
// load weights
for (int r = 0; r < this->R_; ++r) {
for (int s = 0; s < this->S_; ++s) {
// For other cases, weights are too big to be kept in registers
// and are loaded as they are used.
if (this->C_per_G_ != 16) {
// still use aligned move since the weigh buffer is 64bytes aligned.
a->vmovaps(
WRegs(r * this->S_ + s),
// load 512 bits for weights, different grouping for different
// workload
x86::zmmword_ptr(
wghts_R_,
(r * this->S_ + s) * this->K_per_G_ * GTogether_ *
paddedICPerG * sizeof(int8_t)));
}
}
}
}
GCONV_INST_DEF_AVX512_AND_VNNI_HEADER
GenConvKernel<SPATIAL_DIM, INST_SET>::storeResult(x86::Emitter* a) {
if (GTogether_ > 1) {
// store with permutation
a->vpermd(x86::Zmm(9), stPermReg_V_, x86::Zmm(9));
if (this->accum_) {
a->vpaddd(x86::Zmm(9), x86::Zmm(9), x86::zmmword_ptr(out_acts_R_));
}
a->vmovups(x86::zmmword_ptr(out_acts_R_), x86::Zmm(9));
} else {
// horizontal add and store
if (this->C_per_G_ == 8) {
a->vextracti32x8(tmpReg1_V_.ymm(), x86::Zmm(9), 1);
a->vphaddd(x86::Ymm(9), x86::Ymm(9), tmpReg1_V_.ymm());
a->vpermq(x86::Ymm(9), x86::Ymm(9), static_cast<asmjit::Imm>(0xd8));
if (this->accum_) {
a->vpaddd(x86::Ymm(9), x86::Ymm(9), x86::ymmword_ptr(out_acts_R_));
}
a->vmovups(x86::ymmword_ptr(out_acts_R_), x86::Ymm(9));
} else if (this->K_per_G_ == 16) {
// we have results in 4 Zmm registers, need to reduce them to 2 Ymm
// register 2 * 8 * 32 where 16 is K_per_g
// first reduce 4 * 16 * 32bits to 4 * 8 * 32bits
for (int k = 0; k < kLoopIters_; ++k) {
auto source_reg = x86::Zmm(9 - k);
auto result_reg = x86::Ymm(9 - k);
a->vextracti32x8(x86::Ymm(0), source_reg, 1);
a->vphaddd(result_reg, result_reg, x86::Ymm(0));
a->vpermq(result_reg, result_reg, static_cast<asmjit::Imm>(0xd8));
}
// secondly reduce 4 * 8 * 32 to 2 * 8 * 32 bits;
for (int k = 0, i = 0; k < kLoopIters_; k += 2, i++) {
auto result_reg = x86::Ymm(9 - k);
auto adjacent_result_reg = x86::Ymm(9 - k - 1);
a->vphaddd(result_reg, result_reg, adjacent_result_reg);
a->vpermq(result_reg, result_reg, static_cast<asmjit::Imm>(0xd8));
if (this->accum_) {
a->vpaddd(
result_reg, result_reg, x86::ymmword_ptr(out_acts_R_, 32 * i));
}
a->vmovups(x86::ymmword_ptr(out_acts_R_, 32 * i), result_reg);
}
}
}
}
GCONV_INST_DEF_AVX512_AND_VNNI_HEADER
GenConvKernel<SPATIAL_DIM, INST_SET>::storeOffset(x86::Emitter* a) {
auto rowOffsetReg_V_Ymm = rowOffsetReg_V_.half();
auto rowOffsetReg_V_Xmm = rowOffsetReg_V_Ymm.half();
auto tmpReg1_V_Xmm = tmpReg1_V_.half().half();
switch (this->C_per_G_) {
case 2:
// store 256-bits containing rowoffset for eight groups
if (this->accum_) {
a->vpaddd(
rowOffsetReg_V_Ymm,
rowOffsetReg_V_Ymm,
x86::ymmword_ptr(row_offset_R_));
}
a->vmovdqu(x86::dword_ptr(row_offset_R_), rowOffsetReg_V_Ymm);
break;
case 4:
// store 128-bits containing rowoffset for four groups
if (this->accum_) {
a->vmovdqu(tmpReg1_V_Xmm, x86::dword_ptr(row_offset_R_));
a->paddd(rowOffsetReg_V_Xmm, tmpReg1_V_Xmm);
}
a->vmovups(x86::dword_ptr(row_offset_R_), rowOffsetReg_V_Xmm);
break;
case 8:
// store 32-bits of one group
if (this->accum_) {
a->vmovd(tmpReg1_V_Xmm, x86::dword_ptr(row_offset_R_));
a->paddd(rowOffsetReg_V_Xmm, tmpReg1_V_Xmm);
}
a->vmovd(x86::dword_ptr(row_offset_R_), rowOffsetReg_V_Xmm);
break;
case 16:
// rowOffsetReg_V_[0:63] has sum for first 8 and
// rowOffsetReg_V_[64:127] has sum for second 8
// execute vphaddd twice to sum the two
a->vphaddd(rowOffsetReg_V_Ymm, rowOffsetReg_V_Ymm, rowOffsetReg_V_Ymm);
a->vphaddd(rowOffsetReg_V_Ymm, rowOffsetReg_V_Ymm, rowOffsetReg_V_Ymm);
if (this->accum_) {
a->vmovd(tmpReg1_V_Xmm, x86::dword_ptr(row_offset_R_));
a->paddd(rowOffsetReg_V_Xmm, tmpReg1_V_Xmm);
}
a->vmovd(x86::dword_ptr(row_offset_R_), rowOffsetReg_V_Xmm);
break;
default:
assert(0 && "not supported case");
}
}
GCONV_INST_DEF_AVX512_AND_VNNI_HEADER
GenConvKernel<SPATIAL_DIM, INST_SET>::genForSingleFilterPoint(
x86::Emitter* a,
int r,
int s,
int act_s,
bool use_zero_reg) {
using WRegs = x86::Zmm;
if (use_zero_reg) {
a->vmovapd(actReg_V_, zeroPTReg_V_); // 64 * 8 bit zero points
} else {
if (this->C_per_G_ != 8) {
// 2(C_Per_g) * 8 (g_together) or
// 4(C_Per_g) * 4 (g_together) or
// 16(C_Per_g) broadcasted into 4 slots of ZMM
a->vbroadcasti32x4(
actReg_V_,
x86::oword_ptr(in_acts_R_, act_s * this->C_ * sizeof(uint8_t)));
} else {
// 8(C_Per_g) broadcasted into 8 slots of ZMM
a->vbroadcasti32x2(
actReg_V_,
x86::qword_ptr(in_acts_R_, act_s * this->C_ * sizeof(uint8_t)));
}
}
// zero extend if C_per_g smaller than 4(the accumulation width our FMA
// instruction)
if (this->C_per_G_ == 2) {
// only use the lower half and extend them to 32bits(4 uint8's)
a->vpmovzxwd(actReg_V_, actReg_V_.half());
}
// row offset
if (this->needRowOffset_) {
if (this->C_per_G_ == 2 || this->C_per_G_ == 4) {
genU8Sum4<INST_SET>(
a, actReg_V_, rowOffsetReg_V_, oneReg16Bit_V_, tmpReg1_V_);
} else {
// still use Ymm for Sum8
genU8Sum8(a, actReg_V_.half(), rowOffsetReg_V_.half(), tmpReg1_V_.half());
}
}
// FMA
if (this->C_per_G_ != 16) {
genU8I8S32FMA<INST_SET>(
a,
actReg_V_,
WRegs(r * this->S_ + s),
WRegs(9),
oneReg16Bit_V_,
tmpReg1_V_);
} else {
// simd_info<inst_set_t::avx512>::WIDTH_BYTES
int kLoopMultiplier = 64 / this->C_per_G_;
for (int k = 0; k < kLoopIters_; ++k) {
a->vmovaps(
WRegs(0),
// copy 512 bits of weights into ZMM, 16(C_Per_g) * 4(1/4 of K_Per_g)
x86::zmmword_ptr(
wghts_R_,
(((r * this->S_ + s) * this->K_per_G_) + k * kLoopMultiplier) *
this->C_per_G_ * sizeof(int8_t)));
// FMA result is not final reduction on C_per_G, producing 4 * 16 outputs
// in which consectutive 4 elements if summed forms one final output over
// K_Per_G dimension, we need 16 final 32bits outputs.
genU8I8S32FMA<INST_SET>(
a, actReg_V_, WRegs(0), WRegs(9 - k), oneReg16Bit_V_, tmpReg1_V_);
}
}
}
#define GENCONVKERNEL_FUNCS(S, IN) \
template void GenConvKernel<S, IN>::genForLoadingWeights<IN>( \
x86::Emitter * a); \
template void GenConvKernel<S, IN>::genConstForPermutations<IN>( \
x86::Emitter * a); \
template void GenConvKernel<S, IN>::genForSingleFilterPoint<IN>( \
x86::Emitter * a, int r, int s, int act_s, bool use_zero_reg); \
template void GenConvKernel<S, IN>::storeResult<IN>(x86::Emitter * a); \
template void GenConvKernel<S, IN>::storeOffset<IN>(x86::Emitter * a);
GENCONVKERNEL_FUNCS(1, inst_set_t::avx512)
GENCONVKERNEL_FUNCS(1, inst_set_t::avx512_vnni)
GENCONVKERNEL_FUNCS(2, inst_set_t::avx512)
GENCONVKERNEL_FUNCS(2, inst_set_t::avx512_vnni)
GENCONVKERNEL_FUNCS(3, inst_set_t::avx512)
GENCONVKERNEL_FUNCS(3, inst_set_t::avx512_vnni)
#undef GENCONVKERNEL_FUNCS
template class GenConvKernel<1, inst_set_t::avx512>;
template class GenConvKernel<1, inst_set_t::avx512_vnni>;
template class GenConvKernel<2, inst_set_t::avx512>;
template class GenConvKernel<2, inst_set_t::avx512_vnni>;
template class GenConvKernel<3, inst_set_t::avx512>;
template class GenConvKernel<3, inst_set_t::avx512_vnni>;
} // namespace fbgemm