- Overview
- Getting Started Quickly (A Summary)
- Requirements
- Getting Started with LLVM
- Program Layout
- An Example Using the LLVM Tool Chain
- Common Problems
- Links
Welcome to LLVM! In order to get started, you first need to know some basic information.
First, LLVM comes in three pieces. The first piece is the LLVM suite. This contains all of the tools, libraries, and header files needed to use LLVM. It contains an assembler, disassembler, bitcode analyzer and bitcode optimizer. It also contains basic regression tests that can be used to test the LLVM tools and the Clang front end.
The second piece is the Clang front end. This component compiles C, C++, Objective C, and Objective C++ code into LLVM bitcode. Once compiled into LLVM bitcode, a program can be manipulated with the LLVM tools from the LLVM suite.
There is a third, optional piece called Test Suite. It is a suite of programs with a testing harness that can be used to further test LLVM's functionality and performance.
The LLVM Getting Started documentation may be out of date. So, the Clang Getting Started page might also be a good place to start.
Here's the short story for getting up and running quickly with LLVM:
- Read the documentation.
- Read the documentation.
- Remember that you were warned twice about reading the documentation.
- Checkout LLVM:
cd where-you-want-llvm-to-live
svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm
- Checkout Clang:
cd where-you-want-llvm-to-live
cd llvm/tools
svn co http://llvm.org/svn/llvm-project/cfe/trunk clang
- Checkout Compiler-RT:
cd where-you-want-llvm-to-live
cd llvm/projects
svn co http://llvm.org/svn/llvm-project/compiler-rt/trunk compiler-rt
- Get the Test Suite Source Code [Optional]
cd where-you-want-llvm-to-live
cd llvm/projects
svn co http://llvm.org/svn/llvm-project/test-suite/trunk test-suite
- Configure and build LLVM and Clang:
cd where-you-want-to-build-llvm
mkdir build
(for building without polluting the source dir)cd build
../llvm/configure [options]
Some common options:--prefix=directory
--- Specify for directory the full pathname of where you want the LLVM tools and libraries to be installed (default/usr/local
).--enable-optimized
--- Compile with optimizations enabled (default is NO).--enable-assertions
--- Compile with assertion checks enabled (default is YES).
make [-j]
--- The-j
specifies the number of jobs (commands) to run simultaneously. This builds both LLVM and Clang for Debug+Asserts mode. The--enable-optimized
configure option is used to specify a Release build.make check-all
--- This run the regression tests to ensure everything is in working order.make update
--- This command is used to update all the svn repositories at once, rather then having tocd
into the individual repositories and runningsvn update
.- It is also possible to use CMake instead of the makefiles. With CMake it is possible to generate project files for several IDEs: Xcode, Eclipse CDT4, CodeBlocks, Qt-Creator (use the CodeBlocks generator), KDevelop3.
- If you get an "internal compiler error (ICE)" or test failures, see below.
Consult the Getting Started with LLVM section for detailed information on configuring and compiling LLVM. See Setting Up Your Environment for tips that simplify working with the Clang front end and LLVM tools. Go to Program Layout to learn about the layout of the source code tree.
Before you begin to use the LLVM system, review the requirements given below. This may save you some trouble by knowing ahead of time what hardware and software you will need.
LLVM is known to work on the following platforms:
OS | Arch | Compilers |
---|---|---|
AuroraUX | x861 | GCC |
Linux | x861 | GCC |
Linux | amd64 | GCC |
Linux | ARM13 | GCC |
Solaris | V9 (Ultrasparc) | GCC |
FreeBSD | x861 | GCC |
FreeBSD | amd64 | GCC |
MacOS X2 | PowerPC | GCC |
MacOS X9 | x86 | GCC |
Cygwin/Win32 | x861, 8, 11 | GCC 3.4.X, binutils 2.20 |
LLVM has partial support for the following platforms:
OS | Arch | Compilers |
---|---|---|
Windows | x861 | Visual Studio 2000 or higher4,5 |
AIX3,4 | PowerPC | GCC |
Linux3,5 | PowerPC | GCC |
Linux7 | Alpha | GCC |
Linux7 | Itanium (IA-64) | GCC |
HP-UX7 | Itanium (IA-64) | HP aCC |
Windows x64 | x86-64 | mingw-w64's GCC-4.5.x12 |
Note
- Code generation supported for Pentium processors and up
- Code generation supported for 32-bit ABI only
- No native code generation
- Build is not complete: one or more tools do not link or function
- The GCC-based C/C++ frontend does not build
- The port is done using the MSYS shell.
- Native code generation exists but is not complete.
- Binutils 2.20 or later is required to build the assembler generated by LLVM properly.
- Xcode 2.5 and gcc 4.0.1 (Apple Build 5370) will trip internal LLVM assert
messages when compiled for Release at optimization levels greater than 0
(i.e.,
-O1
and higher). AddOPTIMIZE_OPTION="-O0"
to the build command line if compiling for LLVM Release or bootstrapping the LLVM toolchain. - For MSYS/MinGW on Windows, be sure to install the MSYS version of the perl package, and be sure it appears in your path before any Windows-based versions such as Strawberry Perl and ActivePerl, as these have Windows-specifics that will cause the build to fail.
- To use LLVM modules on Win32-based system, you may configure LLVM
with
--enable-shared
. - To compile SPU backend, you need to add
LDFLAGS=-Wl,--stack,16777216
to configure. - MCJIT not working well pre-v7, old JIT engine not supported any more.
Note that you will need about 1-3 GB of space for a full LLVM build in Debug
mode, depending on the system (it is so large because of all the debugging
information and the fact that the libraries are statically linked into multiple
tools). If you do not need many of the tools and you are space-conscious, you
can pass ONLY_TOOLS="tools you need"
to make. The Release build requires
considerably less space.
The LLVM suite may compile on other platforms, but it is not guaranteed to do so. If compilation is successful, the LLVM utilities should be able to assemble, disassemble, analyze, and optimize LLVM bitcode. Code generation should work as well, although the generated native code may not work on your platform.
Compiling LLVM requires that you have several software packages installed. The table below lists those required packages. The Package column is the usual name for the software package that LLVM depends on. The Version column provides "known to work" versions of the package. The Notes column describes how LLVM uses the package and provides other details.
Package | Version | Notes |
---|---|---|
GNU Make | 3.79, 3.79.1 | Makefile/build processor |
GCC | 3.4.2 | C/C++ compiler1 |
TeXinfo | 4.5 | For building the CFE |
SVN | >=1.3 | Subversion access to LLVM2 |
python | >=2.4 | Automated test suite3 |
perl | >=5.6.0 | Utilities |
GNU M4 | 1.4 | Macro processor for configuration4 |
GNU Autoconf | 2.60 | Configuration script builder4 |
GNU Automake | 1.9.6 | aclocal macro generator4 |
libtool | 1.5.22 | Shared library manager4 |
zlib | >=1.2.3.4 | Compression library5 |
Note
- Only the C and C++ languages are needed so there's no need to build the other languages for LLVM's purposes. See below for specific version info.
- You only need Subversion if you intend to build from the latest LLVM sources. If you're working from a release distribution, you don't need Subversion.
- Only needed if you want to run the automated test suite in the
llvm/test
directory. - If you want to make changes to the configure scripts, you will need GNU autoconf (2.60), and consequently, GNU M4 (version 1.4 or higher). You will also need automake (1.9.6). We only use aclocal from that package.
- Optional, adds compression/uncompression capabilities to selected LLVM tools.
Additionally, your compilation host is expected to have the usual plethora of Unix utilities. Specifically:
- ar --- archive library builder
- bzip2 --- bzip2 command for distribution generation
- bunzip2 --- bunzip2 command for distribution checking
- chmod --- change permissions on a file
- cat --- output concatenation utility
- cp --- copy files
- date --- print the current date/time
- echo --- print to standard output
- egrep --- extended regular expression search utility
- find --- find files/dirs in a file system
- grep --- regular expression search utility
- gzip --- gzip command for distribution generation
- gunzip --- gunzip command for distribution checking
- install --- install directories/files
- mkdir --- create a directory
- mv --- move (rename) files
- ranlib --- symbol table builder for archive libraries
- rm --- remove (delete) files and directories
- sed --- stream editor for transforming output
- sh --- Bourne shell for make build scripts
- tar --- tape archive for distribution generation
- test --- test things in file system
- unzip --- unzip command for distribution checking
- zip --- zip command for distribution generation
LLVM is very demanding of the host C++ compiler, and as such tends to expose
bugs in the compiler. In particular, several versions of GCC crash when trying
to compile LLVM. We routinely use GCC 4.2 (and higher) or Clang. Other
versions of GCC will probably work as well. GCC versions listed here are known
to not work. If you are using one of these versions, please try to upgrade your
GCC to something more recent. If you run into a problem with a version of GCC
not listed here, please let us know. Please use
the "gcc -v
" command to find out which version of GCC you are using.
GCC versions prior to 3.0: GCC 2.96.x and before had several problems in the STL that effectively prevent it from compiling LLVM.
GCC 3.2.2 and 3.2.3: These versions of GCC fails to compile LLVM with a bogus template error. This was fixed in later GCCs.
GCC 3.3.2: This version of GCC suffered from a serious bug which causes it to crash in the
"convert_from_eh_region_ranges_1
" GCC function.
Cygwin GCC 3.3.3: The version of GCC 3.3.3 commonly shipped with Cygwin does not work.
SuSE GCC 3.3.3: The version of GCC 3.3.3 shipped with SuSE 9.1 (and possibly others) does not compile LLVM correctly (it appears that exception handling is broken in some cases). Please download the FSF 3.3.3 or upgrade to a newer version of GCC.
GCC 3.4.0 on linux/x86 (32-bit): GCC miscompiles portions of the code generator, causing an infinite loop in the llvm-gcc build when built with optimizations enabled (i.e. a release build).
GCC 3.4.2 on linux/x86 (32-bit): GCC miscompiles portions of the code
generator at -O3, as with 3.4.0. However gcc 3.4.2 (unlike 3.4.0) correctly
compiles LLVM at -O2. A work around is to build release LLVM builds with
"make ENABLE_OPTIMIZED=1 OPTIMIZE_OPTION=-O2 ...
"
GCC 3.4.x on X86-64/amd64: GCC miscompiles portions of LLVM.
GCC 3.4.4 (CodeSourcery ARM 2005q3-2): this compiler miscompiles LLVM when
building with optimizations enabled. It appears to work with "make
ENABLE_OPTIMIZED=1 OPTIMIZE_OPTION=-O1
" or build a debug build.
IA-64 GCC 4.0.0: The IA-64 version of GCC 4.0.0 is known to miscompile LLVM.
Apple Xcode 2.3: GCC crashes when compiling LLVM at -O3 (which is the
default with ENABLE_OPTIMIZED=1. To work around this, build with
"ENABLE_OPTIMIZED=1 OPTIMIZE_OPTION=-O2
".
GCC 4.1.1: GCC fails to build LLVM with template concept check errors compiling some files. At the time of this writing, GCC mainline (4.2) did not share the problem.
GCC 4.1.1 on X86-64/amd64: GCC miscompiles portions of LLVM when compiling llvm itself into 64-bit code. LLVM will appear to mostly work but will be buggy, e.g. failing portions of its testsuite.
GCC 4.1.2 on OpenSUSE: Seg faults during libstdc++ build and on x86_64 platforms compiling md5.c gets a mangled constant.
GCC 4.1.2 (20061115 (prerelease) (Debian 4.1.1-21)) on Debian: Appears to miscompile parts of LLVM 2.4. One symptom is ValueSymbolTable complaining about symbols remaining in the table on destruction.
GCC 4.1.2 20071124 (Red Hat 4.1.2-42): Suffers from the same symptoms as the previous one. It appears to work with ENABLE_OPTIMIZED=0 (the default).
Cygwin GCC 4.3.2 20080827 (beta) 2: Users reported various problems related with link errors when using this GCC version.
Debian GCC 4.3.2 on X86: Crashes building some files in LLVM 2.6.
GCC 4.3.3 (Debian 4.3.3-10) on ARM: Miscompiles parts of LLVM 2.6 when
optimizations are turned on. The symptom is an infinite loop in
FoldingSetImpl::RemoveNode
while running the code generator.
SUSE 11 GCC 4.3.4: Miscompiles LLVM, causing crashes in ValueHandle logic.
GCC 4.3.5 and GCC 4.4.5 on ARM: These can miscompile value >> 1
even at
-O0
. A test failure in test/Assembler/alignstack.ll
is one symptom of
the problem.
GCC 4.6.3 on ARM: Miscompiles llvm-readobj
at -O3
. A test failure
in test/Object/readobj-shared-object.test
is one symptom of the problem.
GNU ld 2.16.X. Some 2.16.X versions of the ld linker will produce very long
warning messages complaining that some ".gnu.linkonce.t.*
" symbol was
defined in a discarded section. You can safely ignore these messages as they are
erroneous and the linkage is correct. These messages disappear using ld 2.17.
GNU binutils 2.17: Binutils 2.17 contains a bug which causes huge link times (minutes instead of seconds) when building LLVM. We recommend upgrading to a newer version (2.17.50.0.4 or later).
GNU Binutils 2.19.1 Gold: This version of Gold contained a bug which causes intermittent failures when building LLVM with position independent code. The symptom is an error about cyclic dependencies. We recommend upgrading to a newer version of Gold.
Clang 3.0 with libstdc++ 4.7.x: a few Linux distributions (Ubuntu 12.10, Fedora 17) have both Clang 3.0 and libstdc++ 4.7 in their repositories. Clang 3.0 does not implement a few builtins that are used in this library. We recommend using the system GCC to compile LLVM and Clang in this case.
Clang 3.0 on Mageia 2. There's a packaging issue: Clang can not find at
least some (cxxabi.h
) libstdc++ headers.
The remainder of this guide is meant to get you up and running with LLVM and to give you some basic information about the LLVM environment.
The later sections of this guide describe the general layout of the LLVM source tree, a simple example using the LLVM tool chain, and links to find more information about LLVM or to get help via e-mail.
Throughout this manual, the following names are used to denote paths specific to the local system and working environment. These are not environment variables you need to set but just strings used in the rest of this document below. In any of the examples below, simply replace each of these names with the appropriate pathname on your local system. All these paths are absolute:
SRC_ROOT
This is the top level directory of the LLVM source tree.
OBJ_ROOT
This is the top level directory of the LLVM object tree (i.e. the tree where object files and compiled programs will be placed. It can be the same as SRC_ROOT).
In order to compile and use LLVM, you may need to set some environment variables.
LLVM_LIB_SEARCH_PATH=/path/to/your/bitcode/libs
[Optional] This environment variable helps LLVM linking tools find the
locations of your bitcode libraries. It is provided only as a convenience
since you can specify the paths using the -L options of the tools and the
C/C++ front-end will automatically use the bitcode files installed in its
lib
directory.
If you have the LLVM distribution, you will need to unpack it before you can begin to compile it. LLVM is distributed as a set of two files: the LLVM suite and the LLVM GCC front end compiled for your platform. There is an additional test suite that is optional. Each file is a TAR archive that is compressed with the gzip program.
The files are as follows, with x.y marking the version number:
llvm-x.y.tar.gz
Source release for the LLVM libraries and tools.
llvm-test-x.y.tar.gz
Source release for the LLVM test-suite.
If you have access to our Subversion repository, you can get a fresh copy of the entire source code. All you need to do is check it out from Subversion as follows:
cd where-you-want-llvm-to-live
- Read-Only:
svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm
- Read-Write:
svn co https://[email protected]/svn/llvm-project/llvm/trunk llvm
This will create an 'llvm
' directory in the current directory and fully
populate it with the LLVM source code, Makefiles, test directories, and local
copies of documentation files.
If you want to get a specific release (as opposed to the most recent revision),
you can checkout it from the 'tags
' directory (instead of 'trunk
'). The
following releases are located in the following subdirectories of the 'tags
'
directory:
- Release 3.3: RELEASE_33/final
- Release 3.2: RELEASE_32/final
- Release 3.1: RELEASE_31/final
- Release 3.0: RELEASE_30/final
- Release 2.9: RELEASE_29/final
- Release 2.8: RELEASE_28
- Release 2.7: RELEASE_27
- Release 2.6: RELEASE_26
- Release 2.5: RELEASE_25
- Release 2.4: RELEASE_24
- Release 2.3: RELEASE_23
- Release 2.2: RELEASE_22
- Release 2.1: RELEASE_21
- Release 2.0: RELEASE_20
- Release 1.9: RELEASE_19
- Release 1.8: RELEASE_18
- Release 1.7: RELEASE_17
- Release 1.6: RELEASE_16
- Release 1.5: RELEASE_15
- Release 1.4: RELEASE_14
- Release 1.3: RELEASE_13
- Release 1.2: RELEASE_12
- Release 1.1: RELEASE_11
- Release 1.0: RELEASE_1
If you would like to get the LLVM test suite (a separate package as of 1.4), you get it from the Subversion repository:
% cd llvm/projects
% svn co http://llvm.org/svn/llvm-project/test-suite/trunk test-suite
By placing it in the llvm/projects
, it will be automatically configured by
the LLVM configure script as well as automatically updated when you run svn
update
.
Git mirrors are available for a number of LLVM subprojects. These mirrors sync
automatically with each Subversion commit and contain all necessary git-svn
marks (so, you can recreate git-svn metadata locally). Note that right now
mirrors reflect only trunk
for each project. You can do the read-only Git
clone of LLVM via:
% git clone http://llvm.org/git/llvm.git
If you want to check out clang too, run:
% cd llvm/tools
% git clone http://llvm.org/git/clang.git
If you want to check out compiler-rt too, run:
% cd llvm/projects
% git clone http://llvm.org/git/compiler-rt.git
If you want to check out the Test Suite Source Code (optional), run:
% cd llvm/projects
% git clone http://llvm.org/git/test-suite.git
Since the upstream repository is in Subversion, you should use git
pull --rebase
instead of git pull
to avoid generating a non-linear history
in your clone. To configure git pull
to pass --rebase
by default on the
master branch, run the following command:
% git config branch.master.rebase true
Please read Developer Policy, too.
Assume master
points the upstream and mybranch
points your working
branch, and mybranch
is rebased onto master
. At first you may check
sanity of whitespaces:
% git diff --check master..mybranch
The easiest way to generate a patch is as below:
% git diff master..mybranch > /path/to/mybranch.diff
It is a little different from svn-generated diff. git-diff-generated diff has
prefixes like a/
and b/
. Don't worry, most developers might know it
could be accepted with patch -p1 -N
.
But you may generate patchset with git-format-patch. It generates by-each-commit patchset. To generate patch files to attach to your article:
% git format-patch --no-attach master..mybranch -o /path/to/your/patchset
If you would like to send patches directly, you may use git-send-email or git-imap-send. Here is an example to generate the patchset in Gmail's [Drafts].
% git format-patch --attach master..mybranch --stdout | git imap-send
Then, your .git/config should have [imap] sections.
[imap]
host = imaps://imap.gmail.com
user = [email protected]
pass = himitsu!
port = 993
sslverify = false
; in English
folder = "[Gmail]/Drafts"
; example for Japanese, "Modified UTF-7" encoded.
folder = "[Gmail]/&Tgtm+DBN-"
; example for Traditional Chinese
folder = "[Gmail]/&g0l6Pw-"
To set up clone from which you can submit code using git-svn
, run:
% git clone http://llvm.org/git/llvm.git
% cd llvm
% git svn init https://llvm.org/svn/llvm-project/llvm/trunk --username=<username>
% git config svn-remote.svn.fetch :refs/remotes/origin/master
% git svn rebase -l # -l avoids fetching ahead of the git mirror.
# If you have clang too:
% cd tools
% git clone http://llvm.org/git/clang.git
% cd clang
% git svn init https://llvm.org/svn/llvm-project/cfe/trunk --username=<username>
% git config svn-remote.svn.fetch :refs/remotes/origin/master
% git svn rebase -l
Likewise for compiler-rt and test-suite.
To update this clone without generating git-svn tags that conflict with the upstream Git repo, run:
% git fetch && (cd tools/clang && git fetch) # Get matching revisions of both trees.
% git checkout master
% git svn rebase -l
% (cd tools/clang &&
git checkout master &&
git svn rebase -l)
Likewise for compiler-rt and test-suite.
This leaves your working directories on their master branches, so you'll need to
checkout
each working branch individually and rebase
it on top of its
parent branch.
For those who wish to be able to update an llvm repo/revert patches easily using
git-svn, please look in the directory for the scripts git-svnup
and
git-svnrevert
.
To perform the aforementioned update steps go into your source directory and
just type git-svnup
or git svnup
and everything will just work.
If one wishes to revert a commit with git-svn, but do not want the git hash to
escape into the commit message, one can use the script git-svnrevert
or
git svnrevert
which will take in the git hash for the commit you want to
revert, look up the appropriate svn revision, and output a message where all
references to the git hash have been replaced with the svn revision.
To commit back changes via git-svn, use git svn dcommit
:
% git svn dcommit
Note that git-svn will create one SVN commit for each Git commit you have pending,
so squash and edit each commit before executing dcommit
to make sure they all
conform to the coding standards and the developers' policy.
On success, dcommit
will rebase against the HEAD of SVN, so to avoid conflict,
please make sure your current branch is up-to-date (via fetch/rebase) before
proceeding.
The git-svn metadata can get out of sync after you mess around with branches and
dcommit
. When that happens, git svn dcommit
stops working, complaining
about files with uncommitted changes. The fix is to rebuild the metadata:
% rm -rf .git/svn
% git svn rebase -l
Please, refer to the Git-SVN manual (man git-svn
) for more information.
Once checked out from the Subversion repository, the LLVM suite source code must
be configured via the configure
script. This script sets variables in the
various *.in
files, most notably llvm/Makefile.config
and
llvm/include/Config/config.h
. It also populates OBJ_ROOT with the
Makefiles needed to begin building LLVM.
The following environment variables are used by the configure
script to
configure the build system:
Variable | Purpose |
---|---|
CC | Tells configure which C compiler to use. By default,
configure will check PATH for clang and GCC C
compilers (in this order). Use this variable to override
configure 's default behavior. |
CXX | Tells configure which C++ compiler to use. By
default, configure will check PATH for
clang++ and GCC C++ compilers (in this order). Use
this variable to override configure 's default
behavior. |
The following options can be used to set or enable LLVM specific options:
--enable-optimized
Enables optimized compilation (debugging symbols are removed and GCC optimization flags are enabled). Note that this is the default setting if you are using the LLVM distribution. The default behavior of an Subversion checkout is to use an unoptimized build (also known as a debug build).
--enable-debug-runtime
Enables debug symbols in the runtime libraries. The default is to strip debug symbols from the runtime libraries.
--enable-jit
Compile the Just In Time (JIT) compiler functionality. This is not available on all platforms. The default is dependent on platform, so it is best to explicitly enable it if you want it.
--enable-targets=target-option
Controls which targets will be built and linked into llc. The default value for
target_options
is "all" which builds and links all available targets. The value "host-only" can be specified to build only a native compiler (no cross-compiler targets available). The "native" target is selected as the target of the build host. You can also specify a comma separated list of target names that you want available in llc. The target names use all lower case. The current set of targets is:arm, cpp, hexagon, mips, mipsel, msp430, powerpc, ptx, sparc, spu, systemz, x86, x86_64, xcore
.
--enable-doxygen
Look for the doxygen program and enable construction of doxygen based documentation from the source code. This is disabled by default because generating the documentation can take a long time and producess 100s of megabytes of output.
--with-udis86
LLVM can use external disassembler library for various purposes (now it's used only for examining code produced by JIT). This option will enable usage of udis86 x86 (both 32 and 64 bits) disassembler library.
To configure LLVM, follow these steps:
Change directory into the object root directory:
% cd OBJ_ROOT
Run the
configure
script located in the LLVM source tree:% SRC_ROOT/configure --prefix=/install/path [other options]
Once you have configured LLVM, you can build it. There are three types of builds:
Debug Builds
These builds are the default when one is using an Subversion checkout and typesgmake
(unless the--enable-optimized
option was used during configuration). The build system will compile the tools and libraries with debugging information. To get a Debug Build using the LLVM distribution the--disable-optimized
option must be passed toconfigure
.
Release (Optimized) Builds
These builds are enabled with the--enable-optimized
option toconfigure
or by specifyingENABLE_OPTIMIZED=1
on thegmake
command line. For these builds, the build system will compile the tools and libraries with GCC optimizations enabled and strip debugging information from the libraries and executables it generates. Note that Release Builds are default when using an LLVM distribution.
Profile Builds
These builds are for use with profiling. They compile profiling information into the code for use with programs likegprof
. Profile builds must be started by specifyingENABLE_PROFILING=1
on thegmake
command line.
Once you have LLVM configured, you can build it by entering the OBJ_ROOT directory and issuing the following command:
% gmake
If the build fails, please check here to see if you are using a version of GCC that is known not to compile LLVM.
If you have multiple processors in your machine, you may wish to use some of the parallel build options provided by GNU Make. For example, you could use the command:
% gmake -j2
There are several special targets which are useful when working with the LLVM source code:
gmake clean
Removes all files generated by the build. This includes object files, generated C/C++ files, libraries, and executables.
gmake dist-clean
Removes everything thatgmake clean
does, but also removes files generated byconfigure
. It attempts to return the source tree to the original state in which it was shipped.
gmake install
Installs LLVM header files, libraries, tools, and documentation in a hierarchy under$PREFIX
, specified with./configure --prefix=[dir]
, which defaults to/usr/local
.
gmake -C runtime install-bytecode
Assuming you built LLVM into $OBJDIR, when this command is run, it will install bitcode libraries into the GCC front end's bitcode library directory. If you need to update your bitcode libraries, this is the target to use once you've built them.
Please see the Makefile Guide for further details on
these make
targets and descriptions of other targets available.
It is also possible to override default values from configure
by declaring
variables on the command line. The following are some examples:
gmake ENABLE_OPTIMIZED=1
Perform a Release (Optimized) build.
gmake ENABLE_OPTIMIZED=1 DISABLE_ASSERTIONS=1
Perform a Release (Optimized) build without assertions enabled.
gmake ENABLE_OPTIMIZED=0
Perform a Debug build.
gmake ENABLE_PROFILING=1
Perform a Profiling build.
gmake VERBOSE=1
Print what gmake
is doing on standard output.
gmake TOOL_VERBOSE=1
Ask each tool invoked by the makefiles to print out what it is doing on
the standard output. This also implies VERBOSE=1
.
Every directory in the LLVM object tree includes a Makefile
to build it and
any subdirectories that it contains. Entering any directory inside the LLVM
object tree and typing gmake
should rebuild anything in or below that
directory that is out of date.
This does not apply to building the documentation.
LLVM's (non-Doxygen) documentation is produced with the
Sphinx documentation generation system.
There are some HTML documents that have not yet been converted to the new
system (which uses the easy-to-read and easy-to-write
reStructuredText plaintext markup
language).
The generated documentation is built in the SRC_ROOT/docs
directory using
a special makefile.
For instructions on how to install Sphinx, see
Sphinx Introduction for LLVM Developers.
After following the instructions there for installing Sphinx, build the LLVM
HTML documentation by doing the following:
$ cd SRC_ROOT/docs
$ make -f Makefile.sphinx
This creates a _build/html
sub-directory with all of the HTML files, not
just the generated ones.
This directory corresponds to llvm.org/docs
.
For example, _build/html/SphinxQuickstartTemplate.html
corresponds to
llvm.org/docs/SphinxQuickstartTemplate.html
.
The :doc:`SphinxQuickstartTemplate` is useful when creating a new document.
It is possible to cross-compile LLVM itself. That is, you can create LLVM
executables and libraries to be hosted on a platform different from the platform
where they are built (a Canadian Cross build). To configure a cross-compile,
supply the configure script with --build
and --host
options that are
different. The values of these options must be legal target triples that your
GCC compiler supports.
The result of such a build is executables that are not runnable on on the build host (--build option) but can be executed on the compile host (--host option).
Check :doc:`HowToCrossCompileLLVM` and Clang docs on how to cross-compile in general for more information about cross-compiling.
The LLVM build system is capable of sharing a single LLVM source tree among several LLVM builds. Hence, it is possible to build LLVM for several different platforms or configurations using the same source tree.
This is accomplished in the typical autoconf manner:
Change directory to where the LLVM object files should live:
% cd OBJ_ROOT
Run the
configure
script found in the LLVM source directory:% SRC_ROOT/configure
The LLVM build will place files underneath OBJ_ROOT in directories named after the build type:
Debug Builds with assertions enabled (the default)
Tools
OBJ_ROOT/Debug+Asserts/bin
Libraries
OBJ_ROOT/Debug+Asserts/lib
Release Builds
Tools
OBJ_ROOT/Release/bin
Libraries
OBJ_ROOT/Release/lib
Profile Builds
Tools
OBJ_ROOT/Profile/bin
Libraries
OBJ_ROOT/Profile/lib
If you're running on a Linux system that supports the binfmt_misc module, and you have root access on the system, you can set your system up to execute LLVM bitcode files directly. To do this, use commands like this (the first command may not be required if you are already using the module):
% mount -t binfmt_misc none /proc/sys/fs/binfmt_misc
% echo ':llvm:M::BC::/path/to/lli:' > /proc/sys/fs/binfmt_misc/register
% chmod u+x hello.bc (if needed)
% ./hello.bc
This allows you to execute LLVM bitcode files directly. On Debian, you can also use this command instead of the 'echo' command above:
% sudo update-binfmts --install llvm /path/to/lli --magic 'BC'
One useful source of information about the LLVM source base is the LLVM doxygen documentation available at http://llvm.org/doxygen/. The following is a brief introduction to code layout:
This directory contains some simple examples of how to use the LLVM IR and JIT.
This directory contains public header files exported from the LLVM library. The three main subdirectories of this directory are:
llvm/include/llvm
This directory contains all of the LLVM specific header files. This directory also has subdirectories for different portions of LLVM:Analysis
,CodeGen
,Target
,Transforms
, etc...
llvm/include/llvm/Support
This directory contains generic support libraries that are provided with LLVM but not necessarily specific to LLVM. For example, some C++ STL utilities and a Command Line option processing library store their header files here.
llvm/include/llvm/Config
This directory contains header files configured by theconfigure
script. They wrap "standard" UNIX and C header files. Source code can include these header files which automatically take care of the conditional #includes that theconfigure
script generates.
This directory contains most of the source files of the LLVM system. In LLVM, almost all code exists in libraries, making it very easy to share code among the different tools.
llvm/lib/VMCore/
This directory holds the core LLVM source files that implement core classes like Instruction and BasicBlock.
llvm/lib/AsmParser/
This directory holds the source code for the LLVM assembly language parser library.
llvm/lib/Bitcode/
This directory holds code for reading and write LLVM bitcode.
llvm/lib/Analysis/
This directory contains a variety of different program analyses, such as Dominator Information, Call Graphs, Induction Variables, Interval Identification, Natural Loop Identification, etc.
llvm/lib/Transforms/
This directory contains the source code for the LLVM to LLVM program transformations, such as Aggressive Dead Code Elimination, Sparse Conditional Constant Propagation, Inlining, Loop Invariant Code Motion, Dead Global Elimination, and many others.
llvm/lib/Target/
This directory contains files that describe various target architectures for code generation. For example, thellvm/lib/Target/X86
directory holds the X86 machine description whilellvm/lib/Target/ARM
implements the ARM backend.
llvm/lib/CodeGen/
This directory contains the major parts of the code generator: Instruction Selector, Instruction Scheduling, and Register Allocation.
llvm/lib/MC/
(FIXME: T.B.D.)
llvm/lib/Debugger/
This directory contains the source level debugger library that makes it possible to instrument LLVM programs so that a debugger could identify source code locations at which the program is executing.
llvm/lib/ExecutionEngine/
This directory contains libraries for executing LLVM bitcode directly at runtime in both interpreted and JIT compiled fashions.
llvm/lib/Support/
This directory contains the source code that corresponds to the header files located inllvm/include/ADT/
andllvm/include/Support/
.
This directory contains projects that are not strictly part of LLVM but are
shipped with LLVM. This is also the directory where you should create your own
LLVM-based projects. See llvm/projects/sample
for an example of how to set
up your own project.
This directory contains libraries which are compiled into LLVM bitcode and used when linking programs with the Clang front end. Most of these libraries are skeleton versions of real libraries; for example, libc is a stripped down version of glibc.
Unlike the rest of the LLVM suite, this directory needs the LLVM GCC front end to compile.
This directory contains feature and regression tests and other basic sanity checks on the LLVM infrastructure. These are intended to run quickly and cover a lot of territory without being exhaustive.
This is not a directory in the normal llvm module; it is a separate Subversion
module that must be checked out (usually to projects/test-suite
). This
module contains a comprehensive correctness, performance, and benchmarking test
suite for LLVM. It is a separate Subversion module because not every LLVM user
is interested in downloading or building such a comprehensive test suite. For
further details on this test suite, please see the :doc:`Testing Guide
<TestingGuide>` document.
The tools directory contains the executables built out of the libraries
above, which form the main part of the user interface. You can always get help
for a tool by typing tool_name -help
. The following is a brief introduction
to the most important tools. More detailed information is in
the Command Guide.
bugpoint
bugpoint
is used to debug optimization passes or code generation backends by narrowing down the given test case to the minimum number of passes and/or instructions that still cause a problem, whether it is a crash or miscompilation. See HowToSubmitABug.html for more information on usingbugpoint
.
llvm-ar
The archiver produces an archive containing the given LLVM bitcode files, optionally with an index for faster lookup.
llvm-as
The assembler transforms the human readable LLVM assembly to LLVM bitcode.
llvm-dis
The disassembler transforms the LLVM bitcode to human readable LLVM assembly.
llvm-link
llvm-link
, not surprisingly, links multiple LLVM modules into a single
program.
lli
lli
is the LLVM interpreter, which can directly execute LLVM bitcode (although very slowly...). For architectures that support it (currently x86, Sparc, and PowerPC), by default,lli
will function as a Just-In-Time compiler (if the functionality was compiled in), and will execute the code much faster than the interpreter.
llc
llc
is the LLVM backend compiler, which translates LLVM bitcode to a native code assembly file or to C code (with the-march=c
option).
opt
opt
reads LLVM bitcode, applies a series of LLVM to LLVM transformations (which are specified on the command line), and then outputs the resultant bitcode. The 'opt -help
' command is a good way to get a list of the program transformations available in LLVM.
opt
can also be used to run a specific analysis on an input LLVM bitcode file and print out the results. It is primarily useful for debugging analyses, or familiarizing yourself with what an analysis does.
This directory contains utilities for working with LLVM source code, and some of the utilities are actually required as part of the build process because they are code generators for parts of LLVM infrastructure.
codegen-diff
codegen-diff
is a script that finds differences between code that LLC generates and code that LLI generates. This is a useful tool if you are debugging one of them, assuming that the other generates correct output. For the full user manual, run`perldoc codegen-diff'
.
emacs/
Theemacs
directory contains syntax-highlighting files which will work with Emacs and XEmacs editors, providing syntax highlighting support for LLVM assembly files and TableGen description files. For information on how to use the syntax files, consult theREADME
file in that directory.
getsrcs.sh
Thegetsrcs.sh
script finds and outputs all non-generated source files, which is useful if one wishes to do a lot of development across directories and does not want to individually find each file. One way to use it is to run, for example:xemacs `utils/getsources.sh`
from the top of your LLVM source tree.
llvmgrep
This little tool performs anegrep -H -n
on each source file in LLVM and passes to it a regular expression provided onllvmgrep
's command line. This is a very efficient way of searching the source base for a particular regular expression.
makellvm
Themakellvm
script compiles all files in the current directory and then compiles and links the tool that is the first argument. For example, assuming you are in the directoryllvm/lib/Target/Sparc
, ifmakellvm
is in your path, simply runningmakellvm llc
will make a build of the current directory, switch to directoryllvm/tools/llc
and build it, causing a re-linking of LLC.
TableGen/
The TableGen
directory contains the tool used to generate register
descriptions, instruction set descriptions, and even assemblers from common
TableGen description files.
vim/
Thevim
directory contains syntax-highlighting files which will work with the VIM editor, providing syntax highlighting support for LLVM assembly files and TableGen description files. For information on how to use the syntax files, consult theREADME
file in that directory.
This section gives an example of using LLVM with the Clang front end.
First, create a simple C file, name it 'hello.c':
#include <stdio.h> int main() { printf("hello world\n"); return 0; }
Next, compile the C file into a native executable:
% clang hello.c -o hello
Note
Clang works just like GCC by default. The standard -S and -c arguments work as usual (producing a native .s or .o file, respectively).
Next, compile the C file into an LLVM bitcode file:
% clang -O3 -emit-llvm hello.c -c -o hello.bc
The -emit-llvm option can be used with the -S or -c options to emit an LLVM
.ll
or.bc
file (respectively) for the code. This allows you to use the standard LLVM tools on the bitcode file.Run the program in both forms. To run the program, use:
% ./hello
and
% lli hello.bc
The second examples shows how to invoke the LLVM JIT, :doc:`lli <CommandGuide/lli>`.
Use the
llvm-dis
utility to take a look at the LLVM assembly code:% llvm-dis < hello.bc | less
Compile the program to native assembly using the LLC code generator:
% llc hello.bc -o hello.s
Assemble the native assembly language file into a program:
% /opt/SUNWspro/bin/cc -xarch=v9 hello.s -o hello.native # On Solaris % gcc hello.s -o hello.native # On others
Execute the native code program:
% ./hello.native
Note that using clang to compile directly to native code (i.e. when the
-emit-llvm
option is not present) does steps 6/7/8 for you.
If you are having problems building or using LLVM, or if you have any other general questions about LLVM, please consult the Frequently Asked Questions page.
This document is just an introduction on how to use LLVM to do some simple things... there are many more interesting and complicated things that you can do that aren't documented here (but we'll gladly accept a patch if you want to write something up!). For more information about LLVM, check out: