DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed for researchers in the machine learning, reinforcement learning, robotics and computer vision communities. The suite provides a set of every day tasks that involve deformables, such as hanging cloth, dressing a person, and buttoning buttons. We provide examples for integrating two popular reinforcement learning libraries: StableBaselines3 and RLlib. We also provide reference implementaionts for training a various Variational Autoencoder variants with our environment. DEDO is easy to set up and has few dependencies, it is highly parallelizable and supports a wide range of customizations: loading custom objects and textures, adjusting material properties.
Note: updates for this repo are in progress (until the presentation at NeurIPS2021 in mid-December).
@inproceedings{dedo2021,
title={Dynamic Environments with Deformable Objects},
author={Rika Antonova and Peiyang Shi and Hang Yin and Zehang Weng and Danica Kragic},
booktitle={Conference on Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks Track},
year={2021},
}
Table of Contents:
Installation
GettingStarted
Tasks
Use with RL
Use with VAE
Customization
Please refer to Wiki for the full documentation
Optional initial step: create a new conda environment with
conda create --name dedo python=3.7
and activate it with
conda activate dedo
.
Conda is not strictly needed, alternatives like virtualenv can be used;
a direct install without using virtual environments is ok as well.
git clone https://github.com/contactrika/dedo
cd dedo
pip install numpy # important: Nessasary for compiling numpy-enabled PyBullet
pip install -e .
Python3.7 is recommended as we have encountered that on some OS + CPU combo, PyBullet could not be compiled with Numpy enabled in Pip Python 3.8. To enable recording/logging videos install ffmpeg:
sudo apt-get install ffmpeg
See more in Installation Guide in wiki
To get started, one can run one of the following commands to visualize the tasks through a hard-coded policy.
python -m dedo.demo --env=HangGarment-v1 --viz --debug
dedo.demo
is the demo module--env=HangGarment-v1
specifies the environment--viz
enables the GUI---debug
outputs additional information in the console--cam_resolution 400
specifies the size of the output window
See more in Usage-guide
See more in Task Overview
We provide a set of 10 tasks involving deformable objects, most tasks contains 5 handmade deformable objects.
There are also two procedurally generated tasks, ButtonProc
and HangProcCloth
, in which the deformable objects are procedurally generated.
Furthermore, to improve generalzation, the v0
of each task will randomizes textures and meshes.
All tasks have -v1
and -v2
with a particular choice of meshes and textures
that is not randomized. Most tasks have versions up to -v5
with additional
mesh and texture variations.
Tasks with procedurally generated cloth (ButtonProc
and HangProcCloth
)
generate random cloth objects for all versions (but randomize textures only
in v0
).
python -m dedo.demo_preset --env=HangBag-v1 --viz
HangBag-v0
: selects one of 108 bag meshes; randomized textures
HangBag-v[1-3]
: three bag versions with textures shown below:
python -m dedo.demo_preset --env=HangGarment-v1 --viz
HangGarment-v0
: hang garment with randomized textures
(a few examples below):
HangGarment-v[1-5]
: 5 apron meshes and texture combos shown below:
HangGarment-v[6-10]
: 5 shirt meshes and texture combos shown below:
python -m dedo.demo_preset --env=HangProcCloth-v1 --viz
HangProcCloth-v0
: random textures,
procedurally generated cloth with 1 and 2 holes.
HangProcCloth-v[1-2]
: same, but with either 1 or 2 holes
python -m dedo.demo_preset --env=Button-v1 --viz
ButtonProc-v0
: randomized textures and procedurally generated cloth with
2 holes, randomized hole/button positions.
ButtonProc-v[1-2]
: procedurally generated cloth, 1 or two holes.
Button-v0
: randomized textures, but fixed cloth and button positions.
Button-v1
: fixed cloth and button positions with one texture
(see image below):
python -m dedo.demo_preset --env=Hoop-v1 --viz
Hoop-v0
: randomized textures
Hoop-v1
: pre-selected textures
python -m dedo.demo_preset --env=Lasso-v1 --viz
Lasso-v0
: randomized textures
Lasso-v1
: pre-selected textures
python -m dedo.demo_preset --env=DressBag-v1 --viz
DressBag-v0
, DressBag-v[1-5]
: demo for -v1
shown below
Visualizations of the 5 backpack mesh and texture variants for DressBag-v[1-5]
:
python -m dedo.demo_preset --env=DressGarment-v1 --viz
DressGarment-v0
, DressGarment-v[1-5]
: demo for -v1
shown below
python -m dedo.demo_preset --env=Mask-v1 --viz
Mask-v0
, Mask-v[1-5]
: a few texture variants shown below:
dedo/run_rl_sb3.py
gives an example of how to train an RL
algorithm from Stable Baselines 3:
python -m dedo.run_rl_sb3 --env=HangGarment-v0 \
--logdir=/tmp/dedo --num_play_runs=3 --viz --debug
dedo/run_rllib.py
gives an example of how to train an RL
algorithm using RLLib:
python -m dedo.run_rllib --env=HangGarment-v0 \
--logdir=/tmp/dedo --num_play_runs=3 --viz --debug
For documentation, please refer to Arguments Reference page in wiki
To launch the Tensorboard:
tensorboard --logdir=/tmp/dedo --bind_all --port 6006 \
--samples_per_plugin images=1000
dedo/run_svae.py
gives an example of how to train various flavors of VAE:
python -m dedo.run_rl_sb3 --env=HangGarment-v0 \
--logdir=/tmp/dedo --num_play_runs=3 --viz --debug
dedo/run_rllib.py
gives an example of how to train an RL
algorithm from Stable Baselines 3:
python -m dedo.run_rl_sb3 --env=HangGarment-v0 \
--logdir=/tmp/dedo --num_play_runs=3 --viz --debug
To launch the Tensorboard:
tensorboard --logdir=/tmp/dedo --bind_all --port 6006 \
--samples_per_plugin images=1000
To load custom object you would first have to fill an entry in DEFORM_INFO
in
task_info.py
. The key should the the .obj
file path relative to data/
:
DEFORM_INFO = {
...
# An example of info for a custom item.
'bags/custom.obj': {
'deform_init_pos': [0, 0.47, 0.47],
'deform_init_ori': [np.pi/2, 0, 0],
'deform_scale': 0.1,
'deform_elastic_stiffness': 1.0,
'deform_bending_stiffness': 1.0,
'deform_true_loop_vertices': [
[0, 1, 2, 3] # placeholder, since we don't know the true loops
]
},
Then you can use --override_deform_obj
flag:
python -m dedo.demo --env=HangBag-v0 --cam_resolution 200 --viz --debug \
--override_deform_obj bags/custom.obj
For items not in DEFORM_DICT
you will need to specify sensible defaults,
for example:
python -m dedo.demo --env=HangGarment-v0 --viz --debug \
--override_deform_obj=generated_cloth/generated_cloth.obj \
--deform_init_pos 0.02 0.41 0.63 --deform_init_ori 0 0 1.5708
Example of scaling up the custom mesh objects:
python -m dedo.demo --env=HangGarment-v0 --viz --debug \
--override_deform_obj=generated_cloth/generated_cloth.obj \
--deform_init_pos 0.02 0.41 0.55 --deform_init_ori 0 0 1.5708 \
--deform_scale 2.0 --anchor_init_pos -0.10 0.40 0.70 \
--other_anchor_init_pos 0.10 0.40 0.70
See more in Customization Wiki
BGarment
dataset is adapter from Berkeley Garment Library
Sewing
dataset is adapted from Generating Datasets of 3D Garments with Sewing Patterns