forked from JDAI-CV/centerX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgnt_pseudo_label.py
69 lines (60 loc) · 2.53 KB
/
gnt_pseudo_label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import cv2
import sys, os
import json
from tqdm import tqdm
sys.path.insert(0, '.')
from configs import add_centernet_config
from detectron2.config import get_cfg
from inference.centernet import build_model
from detectron2.checkpoint import DetectionCheckpointer
def get_widerface_images():
lines = open('datasets/wider_face_add_lm_10_10_add_mafa/ImageSets/Main/trainval_all.txt').readlines()
root = 'datasets/wider_face_add_lm_10_10_add_mafa/JPEGImages/'
images = [root + i.strip() + '.jpg' for i in lines]
return images
def get_crowdhuman_images():
json_file = 'datasets/crowd_human/Annotations/annotation_train.odgt'
lines = open(json_file).readlines()
root = 'datasets/crowd_human/JPEGImages/'
images = [root + json.loads(line.strip('\n'))['ID']+ '.jpg' for line in lines]
return images
if __name__ == "__main__":
# cfg
cfg = get_cfg()
add_centernet_config(cfg)
#cfg.merge_from_file("yamls/coco_det/centernet_r_50_C4_0.5x_coco_person.yaml")
cfg.merge_from_file("yamls/person_face/face_res50.yaml")
# model
model = build_model(cfg)
#DetectionCheckpointer(model).load("models/coco_det_crowd_R50_SGD.pth")
DetectionCheckpointer(model).load("models/person_face_R50_face_adam.pth")
model.eval()
#txt
#txt = open('datasets/wider_face_add_lm_10_10_add_mafa/widerface_pseudo_human.txt','w')
txt = open('datasets/crowd_human/crowdhuman_pseudo_face.txt','w')
class_name = 'face'
# images
images = get_crowdhuman_images()
bs = 8
for i in tqdm(range(0, len(images), bs)):
images_rgb = [cv2.imread(j)[:,:,::-1] for j in images[i:i + bs]]
img_names = [os.path.basename(j) for j in images[i:i + bs]]
results = model.inference_on_images(images_rgb, K=100, max_size=640)
for k,result in enumerate(results):
cls = result['cls'].cpu().numpy()
bbox = result['bbox'].cpu().numpy()
scores = result['scores'].cpu().numpy()
H,W,C = images_rgb[k].shape
img = images_rgb[k][:,:,::-1]
img_name = img_names[k]
line = ';'.join([img_name,str(W),str(H)])
for c,(x1,y1,x2,y2),s in zip(cls,bbox,scores):
if c != 0.0 or s < 0.3:
continue
x1 = str(max(0, int(x1)))
y1 = str(max(0, int(y1)))
x2 = str(min(W, int(x2)))
y2 = str(min(H, int(y2)))
s = str(round(float(s),3))
line += ';'.join(['',class_name,x1,y1,x2,y2])
txt.write(line+'\n')