forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 4
/
CallGraphSort.cpp
249 lines (211 loc) · 7.84 KB
/
CallGraphSort.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
//===- CallGraphSort.cpp --------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// This is based on the ELF port, see ELF/CallGraphSort.cpp for the details
/// about the algorithm.
///
//===----------------------------------------------------------------------===//
#include "CallGraphSort.h"
#include "COFFLinkerContext.h"
#include "InputFiles.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "lld/Common/ErrorHandler.h"
#include <numeric>
using namespace llvm;
using namespace lld;
using namespace lld::coff;
namespace {
struct Edge {
int from;
uint64_t weight;
};
struct Cluster {
Cluster(int sec, size_t s) : next(sec), prev(sec), size(s) {}
double getDensity() const {
if (size == 0)
return 0;
return double(weight) / double(size);
}
int next;
int prev;
uint64_t size;
uint64_t weight = 0;
uint64_t initialWeight = 0;
Edge bestPred = {-1, 0};
};
class CallGraphSort {
public:
CallGraphSort(const COFFLinkerContext &ctx);
DenseMap<const SectionChunk *, int> run();
private:
std::vector<Cluster> clusters;
std::vector<const SectionChunk *> sections;
const COFFLinkerContext &ctx;
};
// Maximum amount the combined cluster density can be worse than the original
// cluster to consider merging.
constexpr int MAX_DENSITY_DEGRADATION = 8;
// Maximum cluster size in bytes.
constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024;
} // end anonymous namespace
using SectionPair = std::pair<const SectionChunk *, const SectionChunk *>;
// Take the edge list in Config->CallGraphProfile, resolve symbol names to
// Symbols, and generate a graph between InputSections with the provided
// weights.
CallGraphSort::CallGraphSort(const COFFLinkerContext &ctx) : ctx(ctx) {
const MapVector<SectionPair, uint64_t> &profile = ctx.config.callGraphProfile;
DenseMap<const SectionChunk *, int> secToCluster;
auto getOrCreateNode = [&](const SectionChunk *isec) -> int {
auto res = secToCluster.try_emplace(isec, clusters.size());
if (res.second) {
sections.push_back(isec);
clusters.emplace_back(clusters.size(), isec->getSize());
}
return res.first->second;
};
// Create the graph.
for (const std::pair<SectionPair, uint64_t> &c : profile) {
const auto *fromSec = cast<SectionChunk>(c.first.first->repl);
const auto *toSec = cast<SectionChunk>(c.first.second->repl);
uint64_t weight = c.second;
// Ignore edges between input sections belonging to different output
// sections. This is done because otherwise we would end up with clusters
// containing input sections that can't actually be placed adjacently in the
// output. This messes with the cluster size and density calculations. We
// would also end up moving input sections in other output sections without
// moving them closer to what calls them.
if (ctx.getOutputSection(fromSec) != ctx.getOutputSection(toSec))
continue;
int from = getOrCreateNode(fromSec);
int to = getOrCreateNode(toSec);
clusters[to].weight += weight;
if (from == to)
continue;
// Remember the best edge.
Cluster &toC = clusters[to];
if (toC.bestPred.from == -1 || toC.bestPred.weight < weight) {
toC.bestPred.from = from;
toC.bestPred.weight = weight;
}
}
for (Cluster &c : clusters)
c.initialWeight = c.weight;
}
// It's bad to merge clusters which would degrade the density too much.
static bool isNewDensityBad(Cluster &a, Cluster &b) {
double newDensity = double(a.weight + b.weight) / double(a.size + b.size);
return newDensity < a.getDensity() / MAX_DENSITY_DEGRADATION;
}
// Find the leader of V's belonged cluster (represented as an equivalence
// class). We apply union-find path-halving technique (simple to implement) in
// the meantime as it decreases depths and the time complexity.
static int getLeader(std::vector<int> &leaders, int v) {
while (leaders[v] != v) {
leaders[v] = leaders[leaders[v]];
v = leaders[v];
}
return v;
}
static void mergeClusters(std::vector<Cluster> &cs, Cluster &into, int intoIdx,
Cluster &from, int fromIdx) {
int tail1 = into.prev, tail2 = from.prev;
into.prev = tail2;
cs[tail2].next = intoIdx;
from.prev = tail1;
cs[tail1].next = fromIdx;
into.size += from.size;
into.weight += from.weight;
from.size = 0;
from.weight = 0;
}
// Group InputSections into clusters using the Call-Chain Clustering heuristic
// then sort the clusters by density.
DenseMap<const SectionChunk *, int> CallGraphSort::run() {
std::vector<int> sorted(clusters.size());
std::vector<int> leaders(clusters.size());
std::iota(leaders.begin(), leaders.end(), 0);
std::iota(sorted.begin(), sorted.end(), 0);
llvm::stable_sort(sorted, [&](int a, int b) {
return clusters[a].getDensity() > clusters[b].getDensity();
});
for (int l : sorted) {
// The cluster index is the same as the index of its leader here because
// clusters[L] has not been merged into another cluster yet.
Cluster &c = clusters[l];
// Don't consider merging if the edge is unlikely.
if (c.bestPred.from == -1 || c.bestPred.weight * 10 <= c.initialWeight)
continue;
int predL = getLeader(leaders, c.bestPred.from);
if (l == predL)
continue;
Cluster *predC = &clusters[predL];
if (c.size + predC->size > MAX_CLUSTER_SIZE)
continue;
if (isNewDensityBad(*predC, c))
continue;
leaders[l] = predL;
mergeClusters(clusters, *predC, predL, c, l);
}
// Sort remaining non-empty clusters by density.
sorted.clear();
for (int i = 0, e = (int)clusters.size(); i != e; ++i)
if (clusters[i].size > 0)
sorted.push_back(i);
llvm::stable_sort(sorted, [&](int a, int b) {
return clusters[a].getDensity() > clusters[b].getDensity();
});
DenseMap<const SectionChunk *, int> orderMap;
// Sections will be sorted by increasing order. Absent sections will have
// priority 0 and be placed at the end of sections.
int curOrder = INT_MIN;
for (int leader : sorted) {
for (int i = leader;;) {
orderMap[sections[i]] = curOrder++;
i = clusters[i].next;
if (i == leader)
break;
}
}
if (!ctx.config.printSymbolOrder.empty()) {
std::error_code ec;
raw_fd_ostream os(ctx.config.printSymbolOrder, ec, sys::fs::OF_None);
if (ec) {
error("cannot open " + ctx.config.printSymbolOrder + ": " + ec.message());
return orderMap;
}
// Print the symbols ordered by C3, in the order of increasing curOrder
// Instead of sorting all the orderMap, just repeat the loops above.
for (int leader : sorted)
for (int i = leader;;) {
const SectionChunk *sc = sections[i];
// Search all the symbols in the file of the section
// and find out a DefinedCOFF symbol with name that is within the
// section.
for (Symbol *sym : sc->file->getSymbols())
if (auto *d = dyn_cast_or_null<DefinedCOFF>(sym))
// Filter out non-COMDAT symbols and section symbols.
if (d->isCOMDAT && !d->getCOFFSymbol().isSection() &&
sc == d->getChunk())
os << sym->getName() << "\n";
i = clusters[i].next;
if (i == leader)
break;
}
}
return orderMap;
}
// Sort sections by the profile data provided by /call-graph-ordering-file
//
// This first builds a call graph based on the profile data then merges sections
// according to the C³ heuristic. All clusters are then sorted by a density
// metric to further improve locality.
DenseMap<const SectionChunk *, int>
coff::computeCallGraphProfileOrder(const COFFLinkerContext &ctx) {
return CallGraphSort(ctx).run();
}