-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets_common.py
847 lines (701 loc) · 31.3 KB
/
datasets_common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
import cProfile
import itertools
import pstats
from curses.ascii import isalpha
from functools import wraps
from pathlib import Path
from typing import Iterator, Optional, Tuple
import IPython
import language_tool_python
import more_itertools
import numpy as np
import torch
from happytransformer import HappyTextToText, TTSettings
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import (AutoModel, AutoModelForSeq2SeqLM, AutoTokenizer,
PegasusForConditionalGeneration, PegasusTokenizer)
import compiler_interface
from compiler_interface import compile
from consts import *
from datasets import Dataset, load_dataset
from example_parser import Example, parse_examples, parse_single_line_examples
from parser_util import line_iter
from regex_ast import RENode
from regex_printer import expr_to_str
from regex_validation import equivalent
from terms_parser import parse_terms
from util import *
def profile(sort_by='cumulative'):
def inner(func):
@wraps(func)
def wrapper(*args, **kwargs):
profiler = cProfile.Profile()
result = profiler.runcall(func, *args, **kwargs)
stats = pstats.Stats(profiler)
stats.sort_stats(sort_by)
stats.print_stats()
return result
return wrapper
return inner
def create_if_doesnt_exist(in_dir: str, filename: str, suffix: str) -> Path:
path = Path(in_dir)
path.mkdir(parents=True, exist_ok=True)
return Path(path, filename).with_suffix(suffix)
def load_examples(path: str) -> list[Example]:
lines = more_itertools.peekable(line_iter(path))
return parse_examples(lines)
def load_examples_single_line(path: str) -> list[Example]:
lines = more_itertools.peekable(line_iter(path))
return parse_single_line_examples(lines)
def load_terms(path: str) -> dict[str, list[str]]:
lines = more_itertools.peekable(line_iter(path))
return parse_terms(lines)
def has_without_dot(example: Example) -> bool:
for desc in example.descs:
found: bool = False
for dot in CANT_APPEAR_IN_SINGLE:
if dot in desc:
found = True
if not found:
return True
return False
def get_eligible_single(examples: list[Example]) -> Iterator[Example]:
"""Expects shuffled list."""
counter_i: int = 0
num_examples: int = len(examples)
while True:
example1: Example = examples[counter_i % num_examples]
counter_i += 1
if not has_without_dot(example1):
continue
yield example1
def get_eligible_pairs(examples: list[Example]) -> Iterator[tuple[Example, Example]]:
"""Expects shuffled list."""
for i, example1 in enumerate(examples):
for j, example2 in enumerate(examples):
if i >= j:
continue
if not has_without_dot(example1) or not has_without_dot(example2):
continue
has_eligible1: bool = False
for desc in example1.descs:
if eligible_desc_in_pair(desc):
has_eligible1 = True
break
has_eligible2: bool = False
for desc in example2.descs:
if eligible_desc_in_pair(desc):
has_eligible2 = True
break
if has_eligible1 and has_eligible2:
to_yield: list[Example] = [example1, example2]
np.random.shuffle(to_yield) # type: ignore
yield (to_yield[0], to_yield[1])
def get_eligible_triplets(examples: list[Example]) -> Iterator[tuple[Example, Example, Example]]:
"""Expects shuffled list."""
for i, example1 in enumerate(examples):
for j, example2 in enumerate(examples):
for k, example3 in enumerate(examples):
if i >= j or j >= k:
continue
if not has_without_dot(example1) or not has_without_dot(example2) or not has_without_dot(example3):
continue
has_eligible1: bool = False
for desc in example1.descs:
if eligible_desc_in_pair(desc):
has_eligible1 = True
break
has_eligible2: bool = False
for desc in example2.descs:
if eligible_desc_in_pair(desc):
has_eligible2 = True
break
has_eligible3: bool = False
for desc in example3.descs:
if eligible_desc_in_pair(desc):
has_eligible3 = True
break
if has_eligible1 and has_eligible2 and has_eligible3:
to_yield: list[Example] = [example1, example2, example3]
np.random.shuffle(to_yield) # type: ignore
yield (to_yield[0], to_yield[1], to_yield[2])
def load_patterns(path: str) -> dict[str, list[Example]]:
as_examples: list[Example] = load_examples(path)
result: dict[str, list[Example]] = dict()
for example in as_examples:
assert example.id != '-1'
if example.id not in result:
result[example.id] = [example]
else:
result[example.id].append(example)
return result
def get_adds(pattern_id: str, example: Example) -> str:
if pattern_id == 'conjunct':
rep_src = example.srcs[0]
ast = compiler_interface.parse(rep_src)
# return '' if ast.repetative() else ' > (.)*'
return ' > (.)*'
else:
return ''
def apply_replacements(original: str, which: list[Tuple[str, str]]) -> str:
for left, right in which:
original = original.replace(left, right)
return original
def eligible_combination_in_pair(pattern_desc: str, example_descs: list[str]) -> bool:
for example_desc in example_descs:
for disallowed in CANT_APPEAR_IN_BOTH:
if disallowed in pattern_desc.lower() and disallowed in example_desc.lower():
return False
return True
def eligible_desc_in_pair(example_desc: str) -> bool:
lower = example_desc.lower()
for each in CANT_APPEAR_IN_SINGLE:
if each in lower:
return False
return True
def apply_pattern(pattern: Example, examples: list[Example], eligible_desc_filter, eligible_combination_filter) -> list[Example]:
representatives: list[str] = [x.representative() for x in examples]
new_example_rewrites: list[list[Tuple[str, str]]] = []
new_runs: list[Tuple[int, list[frozenset[str]]]] = []
new_descs: list[str] = []
new_srcs: list[str] = []
new_id: str = f'_ADDED_{pattern.id}_' + '|'.join(representatives)
merged_rewrites: list[list[Tuple[str, str]]] = merge_rewrites(examples)
if len(pattern.example_rewrites) > 0:
for r in merged_rewrites:
for pattern_r in pattern.example_rewrites:
new_example_rewrites.append(r + pattern_r)
else:
new_example_rewrites = merged_rewrites
src_candidates: list[list[str]] = [x.srcs for x in examples]
for candidate in src_candidates:
np.random.shuffle(candidate)
desc_candidates: list[list[str]] = [
list(filter(eligible_desc_filter, x.descs)) for x in examples]
for candidate in desc_candidates:
np.random.shuffle(candidate)
desc_combinations = itertools.product(*desc_candidates) # type: ignore
chosen_srcs: list[str] = next(
itertools.product(*src_candidates)) # type: ignore
# assert len(desc_combinations) > 0
adds: list[str] = [get_adds(pattern.id, x) for x in examples]
pattern_desc: str = random_from(pattern.descs)
chosen_descs: list[str] = []
for desc_combination in desc_combinations:
if not eligible_combination_filter(pattern_desc, desc_combination):
continue
chosen_descs = desc_combination # type: ignore
break
if chosen_descs == []:
return []
replacements: list[Tuple[str, str]] = []
for i in range(len(examples)):
desc_i: str = map_desc(
examples[i].vars(), AUGMENT_CHAR_LIST[i], chosen_descs[i])
desc_i: str = times_map_desc(TIMES_CHAR_LIST[i], desc_i)
desc_i = desc_i[0].lower() + desc_i[1:]
replacements.append((f'DESC{i}', desc_i))
replacements.append((f'ADD{i}', adds[i]))
new_descs.append(clean_desc(
apply_replacements(pattern_desc, replacements)))
pattern_src: str = random_from(pattern.srcs)
replacements: list[Tuple[str, str]] = []
for i in range(len(examples)):
src_i: str = map_desc(
examples[i].vars(), AUGMENT_CHAR_LIST[i], chosen_srcs[i])
src_i: str = times_map_desc(TIMES_CHAR_LIST[i], src_i)
replacements.append((f'SRC{i}', src_i))
replacements.append((f'ADD{i}', adds[i]))
new_srcs.append(apply_replacements(pattern_src, replacements))
return [Example(True, new_example_rewrites, new_runs, new_descs, new_srcs, new_id)]
def augmented_ab(patterns: dict[str, list[Example]], abs: list[tuple[Example, str, str]]) -> list[Tuple[Example, str, str]]:
num_abs: int = len(abs)
new_abs: list[Tuple[Example, str, str]] = []
to_add_single: dict[str, int] = {
'avoid': round(ADD_AVOIDANCE_P / ADD_TOTAL * ADD_P * num_abs),
'avoid_both': round(ADD_AVOIDANCE_BOTH_P / ADD_TOTAL * ADD_P * num_abs),
}
to_add_pairs: dict[str, int] = {
'concat': round(ADD_CONCAT_P / ADD_TOTAL * ADD_P * num_abs),
'disjunct': round(ADD_DISJUNCT_P / ADD_TOTAL * ADD_P * num_abs),
'conjunct': round(ADD_CONJUNCT_P / ADD_TOTAL * ADD_P * num_abs),
'concat_avoid': round(ADD_CONCAT_AVOID_P / ADD_TOTAL * ADD_P * num_abs),
}
to_add_triplets: dict[str, int] = {
'concat_concat': round(ADD_CONCAT_CONCAT_P / ADD_TOTAL * ADD_P * num_abs),
'disjunct_concat': round(ADD_DISJUNCT_CONCAT_P / ADD_TOTAL * ADD_P * num_abs),
'concat_disjunct': round(ADD_CONCAT_DISJUNCT_P / ADD_TOTAL * ADD_P * num_abs),
}
examples: list[Example] = [x[0] for x in abs]
np.random.shuffle(examples) # type: ignore
eligible_single: Iterator[Example] = get_eligible_single(examples)
for pattern_id, pattern_num in to_add_single.items():
for counter in tqdm(range(pattern_num), pattern_id):
pattern = random_from(patterns[pattern_id])
example = next(eligible_single)
new_example = apply_pattern(
pattern, [example], lambda x: True, lambda x, y: True)
new_abs.extend(get_single_ab(new_example))
np.random.shuffle(examples) # type: ignore
eligible_pairs: Iterator[Tuple[Example, Example]
] = get_eligible_pairs(examples)
for pattern_id, pattern_num in to_add_pairs.items():
for counter in tqdm(range(pattern_num), pattern_id):
pattern = random_from(patterns[pattern_id])
example1, example2 = next(eligible_pairs)
example = apply_pattern(
pattern, [example1, example2], eligible_desc_in_pair, eligible_combination_in_pair)
new_abs.extend(get_single_ab(example))
np.random.shuffle(examples) # type: ignore
eligible_triplets: Iterator[Tuple[Example, Example,
Example]] = get_eligible_triplets(examples)
for pattern_id, pattern_num in to_add_triplets.items():
for counter in tqdm(range(pattern_num), pattern_id):
pattern = random_from(patterns[pattern_id])
example1, example2, example3 = next(eligible_triplets)
example = apply_pattern(
pattern, [example1, example2, example3], eligible_desc_in_pair, eligible_combination_in_pair)
new_abs.extend(get_single_ab(example))
return new_abs
def get_single_ab(examples: list[Example]):
if len(examples) == 0:
return []
example = examples[0]
np.random.shuffle(example.descs)
np.random.shuffle(example.srcs)
ast = compiler_interface.parse(example.srcs[0])
rewrites_nodes = ast.rewrites()
np.random.shuffle(rewrites_nodes) # type: ignore
return [(example, example.descs[0], expr_to_str(rewrites_nodes[0]))]
def apply_text_rewrite_with_concat(x: str, rewrite: list[Tuple[str, str]], sep: str) -> str:
new_string: str = x
for left, right in rewrite:
if ' ' in right:
right = sep.join(right.split(' '))
right = right.replace('the_', '')
new_string = new_string.replace(left, right)
return new_string
def get_all_terms_from_tag(terms: dict[str, list[str]], term_tag: str) -> list[str]:
applicable: list[str] = []
for term, tags in terms.items():
if term_tag in tags:
applicable.append(term)
assert len(applicable) > 0
return applicable
# @profile(sort_by='tottime')
def ab_rewrites(abs: list[Tuple[Example, str, str]], terms: dict[str, list[str]], to_cap: bool) -> list[Tuple[Example, str, str]]:
np.random.shuffle(abs) # type: ignore
statistics = ab_statistics(abs)
new_abs: list[Tuple[Example, str, str]] = []
for i, (example, desc, src) in enumerate(abs):
if not to_cap:
to_take = 1
else:
id = example.representative() + '|' + desc
to_take = max(1, round(SENTENCE_CAP / statistics[id]))
new_rewrites: list[list[Tuple[str, str]]] = []
if len(example.example_rewrites) > 0:
for j in range(to_take):
new_rewrites.append(get_new_rewrite(example, terms))
for rewrite in new_rewrites:
r_desc = apply_text_rewrite_with_concat(desc, rewrite, ' ')
r_src = apply_text_rewrite_with_concat(src, rewrite, '_')
new_abs.append((example, r_desc, r_src))
if '$' not in src and '$' not in desc:
new_abs.append((example, desc, src))
return new_abs
def extract_time_vars(a: str) -> list[str]:
r = []
buf = ''
reading: bool = False
for c in a:
if c == '#':
reading = True
elif c.isalpha():
if reading:
buf += c
else:
reading = False
if len(buf) > 0:
r.append(buf)
buf = ''
if len(buf) > 0:
r.append(buf)
return r
def ab_rewrites_num(abs: list[Tuple[Example, str, str]]) -> list[Tuple[Example, str, str]]:
np.random.shuffle(abs) # type: ignore
new_abs: list[Tuple[Example, str, str]] = []
for i, (example, desc, src) in enumerate(abs):
low: int = 2 if '##' in desc else 1
if '#' in desc:
time_vars: list[str] = extract_time_vars(desc)
time_var_values: dict[str, int] = {
var: np.random.randint(low, HIGHEST_TIMES+1) for var in time_vars}
for var, times in time_var_values.items():
if low == 2:
rep = random_from(NUM_MAP[times])
desc = desc.replace(f'##{var}', rep)
src = src.replace(f'##{var}', str(times))
desc = desc.replace(f'#{var}', rep)
src = src.replace(f'#{var}', str(times))
else:
rep = random_from(TIMES_MAP[times])
desc = desc.replace(f'#{var}', rep)
src = src.replace(f'#{var}', str(times))
if '#' in src:
time_vars: list[str] = extract_time_vars(src)
for var in time_vars:
if '##' in src:
src = src.replace(f'##{var}', '#SOME')
else:
src = src.replace(f'#{var}', '#SOME')
new_abs.append((example, desc, src))
return new_abs
def get_new_rewrite(example: Example, terms) -> list[Tuple[str, str]]:
rewrite: list[Tuple[str, str]] = random_from(example.example_rewrites)
all_replacements: dict[str, list[str]] = dict()
for left, right in rewrite:
if right.isupper():
all_replacements[left] = get_all_terms_from_tag(terms, right)
else:
all_replacements[left] = [right]
for k in all_replacements:
np.random.shuffle(all_replacements[k])
combination = next(itertools.product(*all_replacements.values()))
new_dict = {k: v for k, v in zip(
all_replacements.keys(), combination)}
return list(new_dict.items())
def clean_desc(desc: str) -> str:
desc = desc.replace('..', '.')
desc = desc.replace('. .', '.')
desc = desc.replace('.,', ',')
desc = desc.replace('. ,', ',')
if np.random.random() < 0.5:
desc = desc[0].upper() + desc[1:]
return desc
def map_rewrite(letter: str, example_rewrites: list[Tuple[str, str]]) -> list[Tuple[str, str]]:
return [(f'{variable}{letter}' if '$' in variable else variable, to_class) for (variable, to_class) in example_rewrites]
def map_trace(letter: str, trace: list[frozenset[str]]) -> list[frozenset[str]]:
return [frozenset([f'{v}{letter}' if '$' in v else v for v in vars]) for vars in trace]
def map_desc(vars: list[str], letter: str, desc: str) -> str:
for v in vars:
desc = desc.replace(v, f'{v}{letter}' if '$' in v else v)
return desc
def times_map_desc(letter: str, desc: str) -> str:
if '##' in desc:
desc = desc.replace('##N', f'##N{letter}')
else:
desc = desc.replace('#N', f'#N{letter}')
return desc
def merge_rewrites(examples: list[Example]) -> list[list[Tuple[str, str]]]:
old_rewrites: list[list[list[Tuple[str, str]]]] = [
x.example_rewrites if len(x.example_rewrites) > 0 else [[]] for x in examples]
new_example_rewrites: list[list[Tuple[str, str]]] = []
for combination in itertools.product(*old_rewrites):
new_rewrite_list: list[Tuple[str, str]] = []
for i, rewrite_list in enumerate(combination):
mapped = map_rewrite(f'{AUGMENT_CHAR_LIST[i]}', rewrite_list)
new_rewrite_list.extend(mapped)
new_example_rewrites.append(new_rewrite_list)
return new_example_rewrites
def filter_rewrites(srcs, rewrites_nodes: list[RENode]) -> list[RENode]:
filtered = []
gotten_srcs: set[str] = set()
for node in rewrites_nodes:
rewrite_src = expr_to_str(node)
found = False
for src in srcs:
if rewrite_src == src:
found = True
if not found and rewrite_src not in gotten_srcs:
filtered.append(node)
gotten_srcs.add(rewrite_src)
return filtered
def ast_rewrites(examples: list[Example]) -> list[Example]:
statistics2: dict[str, int] = {'has_demorgan': 0, 'no_demorgan': 0}
for i, example in enumerate(examples):
to_take: int = max(1, SENTENCE_CAP - len(example.srcs))
new_srcs: list[str] = []
asts = [compiler_interface.parse(src) for src in example.srcs]
for src, ast in zip(example.srcs, asts):
rewrites_nodes = ast.rewrites()
np.random.shuffle(rewrites_nodes) # type: ignore
rewrites_nodes = rewrites_nodes[:to_take]
filtered = filter_rewrites(example.srcs, rewrites_nodes)
rewrites = [expr_to_str(f) for f in filtered]
for ast2 in filtered:
rewrite_statistics = ast2.get_statistics()
if rewrite_statistics.num_demorgan > 0:
statistics2['has_demorgan'] += 1
else:
statistics2['no_demorgan'] += 1
new_srcs.extend(rewrites)
np.random.shuffle(new_srcs)
new_srcs = new_srcs[:to_take]
example.srcs.extend(new_srcs)
return examples
def desc_src_to_line(a: str, b: str) -> str:
return '{"a": "' + a.lower() + '", "b":"' + b.lower() + '"}'
def desc_src_to_line_human(a: str, b: str) -> str:
return a.lower() + ' => ' + b.lower()
# @profile(sort_by='tottime')
def validate_runs(examples: list[Example]):
for (i, example) in enumerate(examples):
print(f'{i}/{len(examples)}')
if len(example.runs) == 0:
print(f'no runs to validate: {example.srcs}')
continue
rewards_sets: dict[Tuple[frozenset[str]], set[Tuple[int]]] = dict()
for (i_src, src) in enumerate(example.srcs):
print(f' src={i_src}/{len(example.srcs)}')
# ast = compiler_interface.parse(src)
# src2 = expr_to_str(ast)
rm = compiler_interface.compile(src)
# rm2 = compiler_interface.compile(src2)
for (i_rr, (reward, run)) in enumerate(example.runs):
rewards = rm.multiple_transitions(0, run)
# rewards2 = rm2.multiple_transitions(0, run)
# assert rewards == rewards2, 'printer failed'
if tuple(run) not in rewards_sets:
rewards_sets[tuple(run)] = set()
rewards_sets[tuple(run)].add(tuple(rewards))
if POSNEG_VALIDATION:
assert (reward > 0) == (sum(
rewards) > 0), f'{reward} @ {run} failed for {src} -> {rewards}'
else:
assert reward == sum(
rewards), f'{reward} @ {run} failed for {src} -> {rewards}'
for run, rewards_set in rewards_sets.items():
assert len(
rewards_set) == 1, f'failed on run {run}, rewards {rewards_set}'
def validate_equiv(examples: list[Example]):
# if validate:
# dfa, _node_creator = compiler_interface.get_dfa(src)
# for rewrite in rewrites:
# dfa_b, _ = compiler_interface.get_dfa(rewrite)
# ineq_evidence = equivalent(
# appears, dfa, dfa_b, test_length, num_tests)
# if len(ineq_evidence) != 0:
# print(src)
# print(rewrite)
# assert len(ineq_evidence) == 0
raise NotImplementedError()
def example_length(ab: Tuple[Example, str, str], tokenizer) -> int:
encoded = tokenizer('<|bos|>' + ab[1] + '<|sep|>' + ab[2] + '<|eos|>')
return len(encoded.input_ids)
def validate_length(abs: list[Tuple[Example, str, str]], tokenizer):
for ab in abs:
ab_len = example_length(ab, tokenizer)
assert ab_len <= PAD_SIZE, f'{ab[0]} => {ab[1]} over {PAD_SIZE}: {ab_len}'
def filter_length(abs: list[Tuple[Example, str, str]], tokenizer):
result = list(
filter(lambda x: example_length(x, tokenizer) <= PAD_SIZE, abs))
return result
def sanity_checks(abs: list[Tuple[Example, str, str]]):
def sanity_check(ab: Tuple[Example, str, str]):
e, desc, src = ab
for i, c in enumerate(src):
if i == 0 or i == len(src) - 1:
continue
if c == ' ':
assert not isalpha(src[i-1]) or not isalpha(src[i+1])
assert '$' not in desc
assert '#' not in desc
assert '##' not in src
try:
assert 'ss ' not in desc.lower()
except:
IPython.embed()
src_lower = src.lower()
if '#' in src:
assert '#some' in src_lower
for ab in abs:
sanity_check(ab)
def manual_fixes(abs: list[Tuple[Example, str, str]]) -> list[Tuple[Example, str, str]]:
def manually_fix(ab: Tuple[Example, str, str]) -> Tuple[Example, str, str]:
ex: Example
desc: str
src: str
replacements: list[tuple[str, str]] = [
('all the coffees', 'coffee'),
('all coffees', 'coffee'),
('coffees', 'coffee'),
('mails', 'mail'),
('breads', 'bread'),
('equipments', 'equipment'),
('all the petrols', 'petrol'),
('all petrols', 'petrol'),
('petrols', 'petrol'),
('toolss', 'tools'),
('bookss', 'books'),
('glassess', 'glasses'),
('shoess', 'shoes'),
('giftss', 'gifts'),
('glovess', 'gloves'),
('foods', 'food'),
('fishs', 'fish'),
]
(ex, desc, src) = ab
for left, right in replacements:
desc = desc.replace(left, right)
return (ex, desc, src)
result: list[Tuple[Example, str, str]] = []
for ab in abs:
result.append(manually_fix(ab))
return result
def make_unique(abs: list[Tuple[Example, str, str]]) -> list[Tuple[Example, str, str]]:
return list(set(abs))
def save_lines(path: Path, lines: list[str]):
with open(path, 'w') as f:
f.writelines(lines)
print(f'wrote {len(lines)} lines to {path}')
def examples_to_ab(examples: list[Example]) -> list[Tuple[Example, str, str]]:
lines: list[Tuple[Example, str, str]] = []
for (i, example) in enumerate(examples):
for desc in example.descs:
for src in example.srcs:
lines.append((example, desc, src))
return lines
def example_statistics(example: Example) -> dict[str, int | str]:
return {
'representative_desc': example.descs[0],
'num_descs': len(example.descs),
'num_srcs': len(example.srcs),
'num_product': len(example.descs) * len(example.srcs),
}
def examples_statistics(examples: list[Example]) -> list[dict[str, int | str]]:
return [example_statistics(example) for example in examples]
def ab_statistics(abs: list[Tuple[Example, str, str]], only_example: bool = False) -> dict[str, int]:
result = dict()
synthetic = 0
for e, desc, src in abs:
if e.synthetic:
synthetic += 1
if only_example:
representative = e.representative()
else:
representative = e.representative() + '|' + desc
if representative not in result:
result[representative] = 0
result[representative] += 1
return result
def statistics_to_lines(statistics: dict[str, int]) -> list[str]:
result: list[str] = []
sorted_statistics = sorted(statistics.items(), key=lambda x: x[1])
for k, v in sorted_statistics:
result.append(f'{v}: {k}\n')
return result
def apply_cap(abs: list[Tuple[Example, str, str]], cap: int) -> list[Tuple[Example, str, str]]:
np.random.shuffle(abs) # type: ignore
taken: dict[str, int] = dict()
result: list[Tuple[Example, str, str]] = list()
for e, desc, src in abs:
representative = e.representative() + '|' + desc
if representative not in taken:
taken[representative] = 0
if taken[representative] < cap:
result.append((e, desc, src))
taken[representative] += 1
return result
def text_tool_correction(abs: list[Tuple[Example, str, str]]) -> list[Tuple[Example, str, str]]:
tool = language_tool_python.LanguageTool('en-US')
new_abs: list[Tuple[Example, str, str]] = []
for (ex, desc, src) in tqdm(abs, "Text-tool correction"):
corrected: str = tool.correct(desc)
new_abs.append((ex, corrected, src))
return new_abs
def correct_ab(abs: list[Tuple[Example, str, str]]) -> list[Tuple[Example, str, str]]:
num_abs: int = len(abs)
new_abs: list[Tuple[Example, str, str]] = []
torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'
# model_name = 'pszemraj/flan-t5-large-grammar-synthesis'
# model_name = 'pszemraj/grammar-synthesis-small'
model_name = 'vennify/t5-base-grammar-correction' # grammar
# model_name = 'leslyarun/grammatical-error-correction' # grammar
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(torch_device)
sentences: list[str] = [f'grammar: {x[1]}' for x in abs]
# sentences: list[str] = [x[1] for x in abs]
data = {'sentences': sentences}
dataset = Dataset.from_dict(data)
tokenized_dataset = dataset.map(lambda x: tokenizer(
x['sentences'], truncation=True, padding='longest'), batched=True)
tokenized_dataset.set_format(type='torch')
loader = DataLoader(tokenized_dataset, batch_size=16) # type: ignore
corrected_sentences: list[str] = []
for batch in tqdm(loader, "Grammar correction"):
with torch.no_grad():
inputs = batch['input_ids'].to(torch_device)
attention_mask = batch['attention_mask'].to(
torch_device)
outputs = model.generate(input_ids=inputs,
attention_mask=attention_mask, num_beams=5, min_length=1, max_length=300)
for output in outputs:
corrected_sentence = tokenizer.decode(
output, skip_special_tokens=True)
corrected_sentences.append(corrected_sentence)
new_abs: list[tuple[Example, str, str]] = [
(x[0], c, x[2]) for x, c in zip(abs, corrected_sentences)]
return new_abs
def paraphrase_ab(abs: list[Tuple[Example, str, str]]) -> list[Tuple[Example, str, str]]:
new_abs: list[Tuple[Example, str, str]] = []
model_name = 'tuner007/pegasus_paraphrase'
torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'
tokenizer = PegasusTokenizer.from_pretrained(model_name)
model = PegasusForConditionalGeneration.from_pretrained( # type: ignore
model_name).to(torch_device) # type: ignore
def get_response(input_text, num_return_sequences, num_beams) -> list[str]:
batch = tokenizer([input_text], truncation=True, padding='longest',
max_length=60, return_tensors="pt").to(torch_device)
translated = model.generate(**batch, max_length=2*len(input_text), num_beams=num_beams,
num_return_sequences=num_return_sequences, temperature=1.5)
tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True)
return tgt_text
def has_vars(e: Example, a: str) -> bool:
for v in e.vars():
if v not in a:
return False
return True
num_beams = 10
num_return_sequences = 10
fail_counter: int = 0
for e, a, b in abs:
try:
p_as: list[str] = get_response(a, num_return_sequences, num_beams)
p_as = [p_a for p_a in p_as if has_vars(e, p_a)]
p_a: str = max(p_as, key=len)
new_abs.append((e, p_a, b))
except:
fail_counter += 1
new_abs.append((e, a, b))
print(f'total={len(new_abs)}, failed={fail_counter}')
return new_abs
def paraphrase_split(abs: list[Tuple[Example, str, str]], prop: float) -> Tuple[list[Tuple[Example, str, str]], list[Tuple[Example, str, str]]]:
np.random.shuffle(abs) # type: ignore
num_original = int(len(abs) * prop)
original: list[Tuple[Example, str, str]] = abs[:num_original]
to_paraphrase: list[Tuple[Example, str, str]] = abs[num_original:]
paraphrased: list[Tuple[Example, str, str]] = paraphrase_ab(to_paraphrase)
assert len(original) + len(paraphrased) == len(abs)
IPython.embed() # type: ignore
return original, paraphrased
def ab_to_lines(abs: list[Tuple[Example, str, str]]) -> list[str]:
result: list[str] = []
for e, desc, src in abs:
result.append(desc_src_to_line(desc, src) + '\n')
return result
def ab_to_lines_human(ab: list[Tuple[Example, str, str]]) -> list[str]:
result: list[str] = []
for e, desc, src in ab:
result.append(desc_src_to_line_human(desc, src) + '\n')
return result
def ab_to_lines_synthetic(ab: list[Tuple[Example, str, str]]) -> list[str]:
result: list[str] = []
for e, desc, src in ab:
# result.append(
# f'{desc_src_to_line_human(desc, src)} ~ {e.id}\n')
skip = len('_ADDED_')
prefix = e.id[skip:skip+len('disjunct_disjunct')]
result.append(f'{desc_src_to_line_human(desc, src)} ~ {prefix}\n')
return result