forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_tree_utils.py
49 lines (36 loc) · 1.82 KB
/
test_tree_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# Owner(s): ["oncall: export"]
from collections import OrderedDict
import torch
from torch._dynamo.test_case import TestCase
from torch.export._tree_utils import is_equivalent, reorder_kwargs
from torch.testing._internal.common_utils import run_tests
from torch.utils._pytree import tree_structure
class TestTreeUtils(TestCase):
def test_reorder_kwargs(self):
original_kwargs = {"a": torch.tensor(0), "b": torch.tensor(1)}
user_kwargs = {"b": torch.tensor(2), "a": torch.tensor(3)}
orig_spec = tree_structure(((), original_kwargs))
reordered_kwargs = reorder_kwargs(user_kwargs, orig_spec)
# Key ordering should be the same
self.assertEqual(reordered_kwargs.popitem()[0], original_kwargs.popitem()[0]),
self.assertEqual(reordered_kwargs.popitem()[0], original_kwargs.popitem()[0]),
def test_equivalence_check(self):
tree1 = {"a": torch.tensor(0), "b": torch.tensor(1), "c": None}
tree2 = OrderedDict(a=torch.tensor(0), b=torch.tensor(1), c=None)
spec1 = tree_structure(tree1)
spec2 = tree_structure(tree2)
def dict_ordered_dict_eq(type1, context1, type2, context2):
if type1 is None or type2 is None:
return type1 is type2 and context1 == context2
if issubclass(type1, (dict, OrderedDict)) and issubclass(
type2, (dict, OrderedDict)
):
return context1 == context2
return type1 is type2 and context1 == context2
self.assertTrue(is_equivalent(spec1, spec2, dict_ordered_dict_eq))
# Wrong ordering should still fail
tree3 = OrderedDict(b=torch.tensor(1), a=torch.tensor(0))
spec3 = tree_structure(tree3)
self.assertFalse(is_equivalent(spec1, spec3, dict_ordered_dict_eq))
if __name__ == "__main__":
run_tests()