-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathindex.html
179 lines (152 loc) · 9.4 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="description" content="">
<meta name="author" content="">
<title>CS5785 Applied Machine Learning</title>
<!-- Bootstrap Core CSS -->
<link href="css/bootstrap.min.css" rel="stylesheet">
<!-- Custom CSS -->
<link href="css/clean-blog.min.css" rel="stylesheet">
<!-- Custom Fonts -->
<!-- <link href="http://maxcdn.bootstrapcdn.com/font-awesome/4.1.0/css/font-awesome.min.css" rel="stylesheet" type="text/css"> -->
<!-- <link href='http://fonts.googleapis.com/css?family=Lora:400,700,400italic,700italic' rel='stylesheet' type='text/css'> -->
<!-- <link href='http://fonts.googleapis.com/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800' rel='stylesheet' type='text/css'> -->
<!-- HTML5 Shim and Respond.js IE8 support of HTML5 elements and media queries -->
<!-- WARNING: Respond.js doesn't work if you view the page via file:// -->
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
<script src="https://oss.maxcdn.com/libs/respond.js/1.4.2/respond.min.js"></script>
<![endif]-->
</head>
<body>
<!-- Navigation -->
<nav class="navbar navbar-default navbar-custom navbar-fixed-top">
<div class="container-fluid">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header page-scroll">
<button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="http://tech.cornell.edu/">Cornell Tech</a>
</div>
<!-- Collect the nav links, forms, and other content for toggling -->
<div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
<ul class="nav navbar-nav navbar-right">
<li>
<a href="index.html">Home</a>
</li>
<li>
<a href="lectures.html">Lectures</a>
</li>
<li>
<a href="assignments.html">Assignments</a>
</li>
<li>
<a href="contact.html">Contact</a>
</li>
</ul>
</div>
<!-- /.navbar-collapse -->
</div>
<!-- /.container -->
</nav>
<!-- Page Header -->
<!-- Set your background image for this header on the line below. -->
<header class="intro-header" style="background-image: url('img/banner.png'); background-color: #777;">
<div class="container">
<div class="row">
<div class="col-lg-8 col-lg-offset-2 col-md-10 col-md-offset-1">
<div class="site-heading">
<h1>Applied Machine Learning</h1>
<hr class="small">
<span class="subheading">2017 Fall CS5785 Cornell Tech</span>
</div>
</div>
</div>
</div>
</header>
<!-- Main Content -->
<div class="container">
<div class="row">
<div class="col-lg-8 col-lg-offset-2 col-md-10 col-md-offset-1">
<div class="post-preview">
<h2 class="post-title">
Fall 2017 is here! Here's what you need to know.
</h2>
<h3 class="post-subtitle">
Course Description
</h3>
<p>
Learn and apply key concepts of modeling, analysis and validation from Machine Learning, Data Mining and Signal Processing to analyze and extract meaning from data. Implement algorithms and perform experiments on images, text, audio and mobile sensor measurements. Gain working knowledge of supervised and unsupervised techniques including classification, regression, clustering, feature selection, association rule mining and dimensionality reduction.
</p>
<h3 class="post-subtitle">
Prerequisites
</h3>
<p>
CS 2800 or equivalent, Linear Algebra, and experience programming with Python or Matlab, or permission of the instructor.
</p>
<h3 class="post-subtitle">
Room & Time
</h3>
<p>
Tuesdays and Thursdays, 10:55AM-12:10PM, Bloomberg Center 131, Cornell Tech<br />
</p>
<p>
Class number: 17130
</p>
<p><b>Links:</b> <a href="https://cms.csuglab.cornell.edu/web/auth/?action=loginview">CMS</a> for homework submission, <a href="https://cs5785fall2017.slack.com/">Slack</a> for discussions.
<h3 class="post-subtitle">
Textbooks (Available for free)
</h3>
<p>
<b>Required:</b> <br/>
T. Hastie, R. Tibshirani and J. Friedman, <a href="http://web.stanford.edu/~hastie/ElemStatLearn/">The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd edition)</a>, Springer-Verlag, 2008.<br />
<b>Recommended:</b> <br/>
Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Tien Lin: <a href="http://work.caltech.edu/textbook.html">Learning from Data</a>, AMLBook, 2012.<br />
P. Harrington, <a href="http://www.manning.com/pharrington/">Machine Learning in Action</a>, Manning, 2012.<br />
A. Rajaraman, J. Leskovec and J. Ullman, <a href="http://infolab.stanford.edu/~ullman/mmds.html">Mining of Massive Datasets</a>, v1.1.<br />
H. Daumé III, <a href="http://ciml.info/">A Course in Machine Learning</a>, v0.8.
</p>
<h3 class="post-subtitle">
Course Requirements and Grading
</h3>
<ul>
<li><p><b>Grade Breakdown:</b> Your grade will be determined by the assignments (30%), one prelim (30%), a final exam (30%), and in-class quizzes (10%). </p></li>
<li><p><b>Homework: </b> There will be four assignments and an “assignment 0” for environment setup. Each assignment will have a due date for completion. Half of the points of the lowest-scoring assignment will count as extra credit, meaning the points received for homeworks 1, 2, 3, and 4 is calculated as (sum of scores) / 3.5.
</p></li>
<li><p><b>Late Policy: </b> Each student has a total of <strong>one</strong> slip day that may be used without penalty. </p></li>
<li><p><b>External Code: </b> Unless otherwise specified, you are allowed to use well known libraries such as <i>scikit-learn, scikit-image, numpy, scipy,</i> etc. in the assignments. Any reference or copy of public code repositories should be properly cited in your submission (examples include <i>Github, Wikipedia, Blogs</i>). In some assignment cases, you are NOT allowed to use any of the libraries above, please refer to individual HW instructions for more details. </p></li>
<li><p><b>Collaboration: </b> You are encouraged (but not required) to work in groups of no more than 2 students on each assignment. Please indicate the name of your collaborator at the top of each assignment and cite any references you used (including articles, books, code, websites, and personal communications). If you’re not sure whether to cite a source, err on the side of caution and cite it. You may submit just one writeup for the group. Remember not to plagiarize: all solutions must be written by members of the group. </p></li>
<li><p><b>Quizzes: </b> There will be surprise in-class quizzes to make sure you attend and pay attention to the class. </p></li>
<li><p><b>Prelim: October 5 </b> in class. The exam is closed book but you are allowed to bring one sheet of written notes (Letter size, two-sided). You are allowed to use a calculator. </p></li>
<li><p><b>Final Exam: November 28 through December 6.</b> The final exam will be hosted on Kaggle. You will develop an algorithm, prepare a professional paper, submit an anonymized version to the EasyChair conference system, and peer-review the work from other groups. You are strongly encouraged to work in a group of three students. </p></li>
</ul>
</div>
</div>
</div>
<hr>
<!-- Footer -->
<footer>
<div class="container">
<div class="row">
<div class="col-lg-8 col-lg-offset-2 col-md-10 col-md-offset-1">
<p class="copyright text-muted">Copyright © Applied Machine Learning 2017</p>
</div>
</div>
</div>
</footer>
<!-- jQuery -->
<script src="js/jquery.js"></script>
<!-- Bootstrap Core JavaScript -->
<script src="js/bootstrap.min.js"></script>
<!-- Custom Theme JavaScript -->
<script src="js/clean-blog.min.js"></script>
</body>
</html>