Authentication and Authorization

COSKA AWS Study

Authentication?

Authentication is the process of verifying the identity of a
user, device, or system to ensure that only authorized
access is granted to protected resources. This is typically
done by requiring the user to provide a password or some
other form of authentication token, which is compared
against a database of authorized users. The goal of
authentication is to prevent unauthorized access to
sensitive information and ensure the confidentiality,
integrity, and availability of data and systems.

ol2 (Authentication)

2
. OHIE el 2 22l

ohd| Lo} Shoj~ il Lot 719420) §F Zota) T
o
2!

21012 843 5 3 1918 Zasior & wit olF Liolsi Xoidll

otolc] : abc
H|YHE : 123456

oI5} (Authorization)

~ (

ol 7152 at2sta Aloj~ otst L LH

2k, of7] Uizt okt & okl et el 215 2 &

NI ID (MIAT o18F 9122 AF2Y o)

Server - cookie, session, (local storage)
T - password encryption
{username, password} . _ MFA
. - session id
- request header
- session verification
- session extend

saves session data

(’Jor‘ri"d) to coqkies

Get user profile (Authenticated request)

(meusion; i sent-franmcackie) - server resource, session hijacking
compares - session timeout, https
e - delegated server

Sends user profile on success

- sticky session

- session sync

- clustering

- failover

- session storage

- elasticache (redis)

a - token, jwt (jason web token)

Load Balancer

Without Session Stickiness

With Session Stickiness

«<>»

Load Balancer

eyJhbGciOiJIUzI 1NilsInR5cCIBIkpXVCJQ. =WilR(Jsonwebioxen)

XXXXXXX.YYYYYYY.Z222Z272Z
header.payload.signature

XbPfblHMI6arZ3Y922BhjWgQzWXcXNrz0ogtVhfEd20 °

- jwt in cookie or local storage

Header i - https://jwt.io/

- payload (user info)

- session (user info in session storage, server)

e : "sub": "1234567890", BASE64URL (header)
ni;g": ':gpsviisv ‘ "name'": "John Doe", e - e Storage
; "iat": 1516239022 BASE64URL (payload) , - stateless (server scale out)

secret) - revocable (session reset)

- expiration time
Token Based Authentication - refresh token (safe)

- openai.com token
CLIENT SERVER

User logs in i Creates JWT
Saves JWT for user

on
localStorage .
Sends to the client

Sends Auth requests

with JWT in header
Compares
Sends response on every subsequent request wT

- expired token (front end)

POST api/aut gnin = refreSh tOken |n DB

{ username, password }

Authenticate { username, password }
e return { token, refreshToken, user info, authorities } $¥ Create JWT string with a secret

Access 0 request data with JWT token on Header

Resource
with
Expired Token

Validate JWT

e return 401 and Token Expired Message throw TokenExpiredError

Send Refresh Token request

Token

Refresh Verify Refresh Token
e return { new token, refreshToken }

Access
Resource with o request data with JWT token on Header
New Token

SSO

Single Sign-On (SSO) is a process that allows a user to access multiple applications or services with just one set of login
credentials (username and password), without having to log in again for each separate application. The user is authenticated
once, and the authentication is then securely shared across all applications and systems that the user wants to access. The
goal of SSO is to provide a seamless and secure user experience, reduce the number of passwords that users need to
remember, and increase security by reducing the number of times a user has to enter their password.

- one time login

- ID / password (forgot, reset)

- saves IT team time

- improves end-user experience, for both employees and customers
- makes your systems more secure, and decreases attack surface

Oauth / SAML / OIDC

| Oauth

Server Browser ' OAuth (Open Authorization): OAuth is an open
standard for authorization, allowing users to grant
third-party applications access to their resources
(e.g., a user granting a to-do list app access to their
Google calendar) without having to share their login
e e credentials. It uses a token-based approach and is

request based

bt ongs typically less centralized than SAML, relying on a
5 E"dimm combination of an authorization server, resource
= s server, and client.
0 Response
oo, redrecLun - openai.com signup
(s SO - clash of clans (facebook connect, friends)
° Request Access Token - mObile
HTTPPOST Endpoint CI::en'tizd(,:ggce:ret - https
and issue oken - authorization
O s | piob iyt - authentication (user login to Facebook)
: ﬂ Response - access token, refresh token
Delver.Service access_token, refresh_token,
id_token, Instance_u,token_typo - authorization code grant (response_type=code)
- implicit grant

- resource owner password credentials grant
- client credentials grant

OAuth 2.0 Web-Server Flow

- openai.com (google oauth)

Identity
Provider

Identify/Authenticate

[IDP-initiated flow the user

begins here] 5 IDP generates SAML assertion

4nd Sencds 1T Dack 10 browser

End User Service
Browser (Agent) Provider

End User access service

[Sﬁ-initiated flow
begins here]

SAML

Security Assertion Markup Language (SAML) is an
XML-based open standard for exchanging
authentication and authorization data between parties,
in particular, between an identity provider (IdP) and a
service provider (SP). It enables SSO by allowing a
user to authenticate with an IdP and then securely
pass the authentication information to an SP, allowing
the user to access multiple applications without having
to log in again. SAML defines the structure and format
of the authentication and authorization data and
provides a secure way for an IdP to pass this
information to an SP. It is widely used in enterprise
and cloud environments, and is supported by many
software products, including web browsers, identity
management systems, and cloud-based applications.

- multiple applications (coska chat, coska booking)
- without oauth (google / facebook)

? This 1d b This would be the Auth.
Relying Party s would be OIDC Provider Provider (Microsoft,

Salesforce in a SF
(RP) Social-Sign On (oP)

implementation

OIDC

OpenlD Connect is an open standard for

Browser Google etc) in a SF
Social-Sign On

i implementation
i

OP session
established

RP session
established

|
|
I
Request resource :

Request URI

Auth. Code request

HTTP Redirect
-

Check for RP session and
redirect to authorisation
endpoint URL if required

Authorisation endpoint

response_type=code

redirect_uri (Iservices/authglobalcallback if SF is RP)
scope (depends on requirements from OP)

state, nonce

Authentication and Consent

|
Auth. dode Response

Callback URL
Auth. Code
state

Verify ID token

Opt
UserlInfo endpoint used

Validate sub matches
ID token

(if SF is RP) Invoke reg. handler
to create/update user

Log in & Serve Resource

HTTP Redirect |

Access Token Req.

Token endpoint
Client ID, client secret, auth code
scope, redirect_UR, state etc

HTTP POST req

Access Token Response

1d token
Access token
(+refresh token)

Request User Information

Userinfo endpoint
Access token

HTTP POST req.

User Information Response

User Info Claims

HTTP POST resp.

HTTP POST resp. \

« Check for OP session

« Authenticate user (return OP
session ID)

« Confirm consent (first time only)

» Generate auth. code

» Redirect to redirect_URI

Validate client id & secret
and authorisation code

Validate access token
Prepare claims

authentication that is built on top of OAuth 2.0. It

provides a simple and secure way for users to

authenticate with an identity provider (IdP) and then
access resources at a service provider (SP) without
having to repeatedly enter their credentials. OpenID
Connect extends OAuth 2.0 by adding an identity layer
that provides user information to the client in the form
of an ID token. The ID token contains information
about the user, such as their name and email address,
and is signed by the IdP to prove its authenticity.
OpenlID Connect is designed to be easy to use and
integrate into modern applications and is supported by
many popular identity providers and cloud-based

services.

Format
Authorization
Authentication

created

Best Suited for

XML
0
0

2001

SSO for Enterprise(Not well suited for mobile)

OAuth2.0

JSON

0

Pseudo-authentication

2005

APl authorization

X

0

2006

SSO for consumer apps

