-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathfeature_extraction.py
155 lines (133 loc) · 4.14 KB
/
feature_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
'''
Utilities for feature extraction.
'''
import numpy as np
import tempfile
import subprocess
import os
import pretty_midi
import librosa
AUDIO_FS = 22050
AUDIO_HOP = 1024
MIDI_FS = 11025
MIDI_HOP = 512
NOTE_START = 36
N_NOTES = 48
def fast_fluidsynth(m, fs):
'''
Faster fluidsynth synthesis using the command-line program
instead of pyfluidsynth.
Parameters
----------
- m : pretty_midi.PrettyMIDI
Pretty MIDI object
- fs : int
Sampling rate
Returns
-------
- midi_audio : np.ndarray
Synthesized audio, sampled at fs
'''
# Write out temp mid file
temp_mid = tempfile.NamedTemporaryFile()
m.write(temp_mid.name)
# Get path to temporary .wav file
temp_wav = tempfile.NamedTemporaryFile()
# Get path to default pretty_midi SF2
sf2_path = os.path.join(os.path.dirname(pretty_midi.__file__),
pretty_midi.DEFAULT_SF2)
# Make system call to fluidsynth
with open(os.devnull, 'w') as devnull:
subprocess.check_output(
['fluidsynth', '-F', temp_wav.name, '-r', str(fs), sf2_path,
temp_mid.name], stderr=devnull)
# Load from temp wav file
audio, _ = librosa.load(temp_wav.name, sr=fs)
# Occasionally, fluidsynth pads a lot of silence on the end, so here we
# crop to the length of the midi object
audio = audio[:int(m.get_end_time() * fs)]
# Close/delete temp files
temp_mid.close()
temp_wav.close()
return audio
def midi_cqt(midi_object):
'''
Synthesize MIDI data, compute its constant-Q spectrogram, normalize, and
log-scale it
Parameters
----------
midi_object : pretty_midi.PrettyMIDI
MIDI data to create constant-Q spectrogram of.
Returns
-------
midi_gram : np.ndarray
Log-magnitude, L2-normalized constant-Q spectrugram of synthesized MIDI
data.
'''
# Synthesize MIDI object as audio data
midi_audio = fast_fluidsynth(midi_object, MIDI_FS)
# Compute CQT of the synthesized audio data
midi_gram = librosa.cqt(
midi_audio, sr=MIDI_FS, hop_length=MIDI_HOP,
fmin=librosa.midi_to_hz(NOTE_START), n_bins=N_NOTES)
# L2-normalize and log-magnitute it
return post_process_cqt(midi_gram)
def audio_cqt(audio_data, fs=AUDIO_FS):
'''
Compute some audio data's constant-Q spectrogram, normalize, and log-scale
it
Parameters
----------
audio_data : np.ndarray
Some audio signal.
fs : int
Sampling rate the audio data is sampled at, should be ``AUDIO_FS``.
Returns
-------
midi_gram : np.ndarray
Log-magnitude, L2-normalized constant-Q spectrugram of synthesized MIDI
data.
'''
# Compute CQT of the synthesized audio data
audio_gram = librosa.cqt(
audio_data, sr=fs, hop_length=AUDIO_HOP,
fmin=librosa.midi_to_hz(NOTE_START), n_bins=N_NOTES)
# L2-normalize and log-magnitute it
return post_process_cqt(audio_gram)
def post_process_cqt(gram):
'''
Normalize and log-scale a Constant-Q spectrogram
Parameters
----------
gram : np.ndarray
Constant-Q spectrogram, constructed from ``librosa.cqt``.
Returns
-------
log_normalized_gram : np.ndarray
Log-magnitude, L2-normalized constant-Q spectrogram.
'''
# Compute log amplitude
gram = librosa.logamplitude(gram, ref_power=gram.max())
# Transpose so that rows are samples
gram = gram.T
# and L2 normalize
gram = librosa.util.normalize(gram, norm=2., axis=1)
# and convert to float32
return gram.astype(np.float32)
def frame_times(gram):
'''
Get the times corresponding to the frames in a spectrogram, which was
created with one of the functions here.
Parameters
----------
gram : np.ndarray
Spectrogram matrix.
Returns
-------
times : np.ndarray
Time, in seconds, of each frame in gram.
'''
# Note that because MIDI_FS = AUDIO_FS/2 and MIDI_HOP = AUDIO_HOP/2, using
# AUDIO_FS and AUDIO_HOP here works whether it's a "MIDI" or "audio" cqt.
return librosa.frames_to_time(
np.arange(gram.shape[0]), AUDIO_FS, AUDIO_HOP)