forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
_async.py
99 lines (81 loc) · 3.7 KB
/
_async.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
"""Async API
This module contains the API for parallelism in TorchScript, notably:
* torch.jit.fork
* torch.jit.wait
This is not intended to be imported directly; please use the exposed
functionalities in `torch.jit`.
"""
import torch
from torch.utils import set_module
from torch.jit._builtins import _register_builtin
from torch._jit_internal import Future
set_module(Future, "torch.jit")
def fork(func, *args, **kwargs):
r"""
Creates an asynchronous task executing `func` and a reference to the value
of the result of this execution. `fork` will return immediately,
so the return value of `func` may not have been computed yet. To force completion
of the task and access the return value invoke `torch.jit.wait` on the Future. `fork` invoked
with a `func` which returns `T` is typed as `torch.jit.Future[T]`. `fork` calls can be arbitrarily
nested, and may be invoked with positional and keyword arguments.
Asynchronous execution will only occur when run in TorchScript. If run in pure python,
`fork` will not execute in parallel. `fork` will also not execute in parallel when invoked
while tracing, however the `fork` and `wait` calls will be captured in the exported IR Graph.
.. warning::
`fork` tasks will execute non-deterministically. We recommend only spawning
parallel fork tasks for pure functions that do not modify their inputs,
module attributes, or global state.
Args:
func (callable or torch.nn.Module): A Python function or `torch.nn.Module`
that will be invoked. If executed in TorchScript, it will execute asynchronously,
otherwise it will not. Traced invocations of fork will be captured in the IR.
``*args``, ``**kwargs``: arguments to invoke `func` with.
Returns:
`torch.jit.Future[T]`: a reference to the execution of `func`. The value `T`
can only be accessed by forcing completion of `func` through `torch.jit.wait`.
Example (fork a free function):
.. code-block:: python
import torch
from torch import Tensor
def foo(a : Tensor, b : int) -> Tensor:
return a + b
def bar(a):
fut : torch.jit.Future[Tensor] = torch.jit.fork(foo, a, b=2)
return torch.jit.wait(fut)
script_bar = torch.jit.script(bar)
input = torch.tensor(2)
# only the scripted version executes asynchronously
assert script_bar(input) == bar(input)
# trace is not run asynchronously, but fork is captured in IR
graph = torch.jit.trace(bar, (input,)).graph
assert "fork" in str(graph)
Example (fork a module method):
.. code-block:: python
import torch
from torch import Tensor
class AddMod(torch.nn.Module):
def forward(self, a: Tensor, b : int):
return a + b
class Mod(torch.nn.Module):
def __init__(self):
super(self).__init__()
self.mod = AddMod()
def forward(self, input):
fut = torch.jit.fork(self.mod, a, b=2)
return torch.jit.wait(fut)
input = torch.tensor(2)
mod = Mod()
assert mod(input) == torch.jit.script(mod).forward(input)
"""
return torch._C.fork(func, *args, **kwargs)
def wait(future):
r"""
Forces completion of a `torch.jit.Future[T]` asynchronous task, returning the
result of the task. See :func:`~fork` for docs and examples.
Args:
func (torch.jit.Future[T]): an asynchronous task reference, created through `torch.jit.fork`
Returns:
`T`: the return value of the the completed task
"""
return torch._C.wait(future)
_register_builtin(wait, "aten::wait")