forked from dominant-strategies/go-quai
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sync.go
466 lines (434 loc) · 16.1 KB
/
sync.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"errors"
"fmt"
"github.com/dominant-strategies/go-quai/common"
"github.com/dominant-strategies/go-quai/common/prque"
"github.com/dominant-strategies/go-quai/core/rawdb"
"github.com/dominant-strategies/go-quai/ethdb"
)
// ErrNotRequested is returned by the trie sync when it's requested to process a
// node it did not request.
var ErrNotRequested = errors.New("not requested")
// ErrAlreadyProcessed is returned by the trie sync when it's requested to process a
// node it already processed previously.
var ErrAlreadyProcessed = errors.New("already processed")
// maxFetchesPerDepth is the maximum number of pending trie nodes per depth. The
// role of this value is to limit the number of trie nodes that get expanded in
// memory if the node was configured with a significant number of peers.
const maxFetchesPerDepth = 16384
// request represents a scheduled or already in-flight state retrieval request.
type request struct {
path []byte // Merkle path leading to this node for prioritization
hash common.Hash // Hash of the node data content to retrieve
data []byte // Data content of the node, cached until all subtrees complete
code bool // Whether this is a code entry
parents []*request // Parent state nodes referencing this entry (notify all upon completion)
deps int // Number of dependencies before allowed to commit this node
callback LeafCallback // Callback to invoke if a leaf node it reached on this branch
}
// SyncPath is a path tuple identifying a particular trie node either in a single
// trie (account) or a layered trie (account -> storage).
//
// Content wise the tuple either has 1 element if it addresses a node in a single
// trie or 2 elements if it addresses a node in a stacked trie.
//
// To support aiming arbitrary trie nodes, the path needs to support odd nibble
// lengths. To avoid transferring expanded hex form over the network, the last
// part of the tuple (which needs to index into the middle of a trie) is compact
// encoded. In case of a 2-tuple, the first item is always 32 bytes so that is
// simple binary encoded.
//
// Examples:
// - Path 0x9 -> {0x19}
// - Path 0x99 -> {0x0099}
// - Path 0x01234567890123456789012345678901012345678901234567890123456789019 -> {0x0123456789012345678901234567890101234567890123456789012345678901, 0x19}
// - Path 0x012345678901234567890123456789010123456789012345678901234567890199 -> {0x0123456789012345678901234567890101234567890123456789012345678901, 0x0099}
type SyncPath [][]byte
// newSyncPath converts an expanded trie path from nibble form into a compact
// version that can be sent over the network.
func newSyncPath(path []byte) SyncPath {
// If the hash is from the account trie, append a single item, if it
// is from the a storage trie, append a tuple. Note, the length 64 is
// clashing between account leaf and storage root. It's fine though
// because having a trie node at 64 depth means a hash collision was
// found and we're long dead.
if len(path) < 64 {
return SyncPath{hexToCompact(path)}
}
return SyncPath{hexToKeybytes(path[:64]), hexToCompact(path[64:])}
}
// SyncResult is a response with requested data along with it's hash.
type SyncResult struct {
Hash common.Hash // Hash of the originally unknown trie node
Data []byte // Data content of the retrieved node
}
// syncMemBatch is an in-memory buffer of successfully downloaded but not yet
// persisted data items.
type syncMemBatch struct {
nodes map[common.Hash][]byte // In-memory membatch of recently completed nodes
codes map[common.Hash][]byte // In-memory membatch of recently completed codes
}
// newSyncMemBatch allocates a new memory-buffer for not-yet persisted trie nodes.
func newSyncMemBatch() *syncMemBatch {
return &syncMemBatch{
nodes: make(map[common.Hash][]byte),
codes: make(map[common.Hash][]byte),
}
}
// hasNode reports the trie node with specific hash is already cached.
func (batch *syncMemBatch) hasNode(hash common.Hash) bool {
_, ok := batch.nodes[hash]
return ok
}
// hasCode reports the contract code with specific hash is already cached.
func (batch *syncMemBatch) hasCode(hash common.Hash) bool {
_, ok := batch.codes[hash]
return ok
}
// Sync is the main state trie synchronisation scheduler, which provides yet
// unknown trie hashes to retrieve, accepts node data associated with said hashes
// and reconstructs the trie step by step until all is done.
type Sync struct {
database ethdb.KeyValueReader // Persistent database to check for existing entries
membatch *syncMemBatch // Memory buffer to avoid frequent database writes
nodeReqs map[common.Hash]*request // Pending requests pertaining to a trie node hash
codeReqs map[common.Hash]*request // Pending requests pertaining to a code hash
queue *prque.Prque // Priority queue with the pending requests
fetches map[int]int // Number of active fetches per trie node depth
bloom *SyncBloom // Bloom filter for fast state existence checks
}
// NewSync creates a new trie data download scheduler.
func NewSync(root common.Hash, database ethdb.KeyValueReader, callback LeafCallback, bloom *SyncBloom) *Sync {
ts := &Sync{
database: database,
membatch: newSyncMemBatch(),
nodeReqs: make(map[common.Hash]*request),
codeReqs: make(map[common.Hash]*request),
queue: prque.New(nil),
fetches: make(map[int]int),
bloom: bloom,
}
ts.AddSubTrie(root, nil, common.Hash{}, callback)
return ts
}
// AddSubTrie registers a new trie to the sync code, rooted at the designated parent.
func (s *Sync) AddSubTrie(root common.Hash, path []byte, parent common.Hash, callback LeafCallback) {
// Short circuit if the trie is empty or already known
if root == emptyRoot {
return
}
if s.membatch.hasNode(root) {
return
}
if s.bloom == nil || s.bloom.Contains(root[:]) {
// Bloom filter says this might be a duplicate, double check.
// If database says yes, then at least the trie node is present
// and we hold the assumption that it's NOT legacy contract code.
blob := rawdb.ReadTrieNode(s.database, root)
if len(blob) > 0 {
return
}
// False positive, bump fault meter
bloomFaultMeter.Mark(1)
}
// Assemble the new sub-trie sync request
req := &request{
path: path,
hash: root,
callback: callback,
}
// If this sub-trie has a designated parent, link them together
if parent != (common.Hash{}) {
ancestor := s.nodeReqs[parent]
if ancestor == nil {
panic(fmt.Sprintf("sub-trie ancestor not found: %x", parent))
}
ancestor.deps++
req.parents = append(req.parents, ancestor)
}
s.schedule(req)
}
// AddCodeEntry schedules the direct retrieval of a contract code that should not
// be interpreted as a trie node, but rather accepted and stored into the database
// as is.
func (s *Sync) AddCodeEntry(hash common.Hash, path []byte, parent common.Hash) {
// Short circuit if the entry is empty or already known
if hash == emptyState {
return
}
if s.membatch.hasCode(hash) {
return
}
if s.bloom == nil || s.bloom.Contains(hash[:]) {
// Bloom filter says this might be a duplicate, double check.
// If database says yes, the blob is present for sure.
// Note we only check the existence with new code scheme, fast
// sync is expected to run with a fresh new node. Even there
// exists the code with legacy format, fetch and store with
// new scheme anyway.
if blob := rawdb.ReadCodeWithPrefix(s.database, hash); len(blob) > 0 {
return
}
// False positive, bump fault meter
bloomFaultMeter.Mark(1)
}
// Assemble the new sub-trie sync request
req := &request{
path: path,
hash: hash,
code: true,
}
// If this sub-trie has a designated parent, link them together
if parent != (common.Hash{}) {
ancestor := s.nodeReqs[parent] // the parent of codereq can ONLY be nodereq
if ancestor == nil {
panic(fmt.Sprintf("raw-entry ancestor not found: %x", parent))
}
ancestor.deps++
req.parents = append(req.parents, ancestor)
}
s.schedule(req)
}
// Missing retrieves the known missing nodes from the trie for retrieval. To aid
// both eth/6x style fast sync and snap/1x style state sync, the paths of trie
// nodes are returned too, as well as separate hash list for codes.
func (s *Sync) Missing(max int) (nodes []common.Hash, paths []SyncPath, codes []common.Hash) {
var (
nodeHashes []common.Hash
nodePaths []SyncPath
codeHashes []common.Hash
)
for !s.queue.Empty() && (max == 0 || len(nodeHashes)+len(codeHashes) < max) {
// Retrieve th enext item in line
item, prio := s.queue.Peek()
// If we have too many already-pending tasks for this depth, throttle
depth := int(prio >> 56)
if s.fetches[depth] > maxFetchesPerDepth {
break
}
// Item is allowed to be scheduled, add it to the task list
s.queue.Pop()
s.fetches[depth]++
hash := item.(common.Hash)
if req, ok := s.nodeReqs[hash]; ok {
nodeHashes = append(nodeHashes, hash)
nodePaths = append(nodePaths, newSyncPath(req.path))
} else {
codeHashes = append(codeHashes, hash)
}
}
return nodeHashes, nodePaths, codeHashes
}
// Process injects the received data for requested item. Note it can
// happpen that the single response commits two pending requests(e.g.
// there are two requests one for code and one for node but the hash
// is same). In this case the second response for the same hash will
// be treated as "non-requested" item or "already-processed" item but
// there is no downside.
func (s *Sync) Process(result SyncResult) error {
// If the item was not requested either for code or node, bail out
if s.nodeReqs[result.Hash] == nil && s.codeReqs[result.Hash] == nil {
return ErrNotRequested
}
// There is an pending code request for this data, commit directly
var filled bool
if req := s.codeReqs[result.Hash]; req != nil && req.data == nil {
filled = true
req.data = result.Data
s.commit(req)
}
// There is an pending node request for this data, fill it.
if req := s.nodeReqs[result.Hash]; req != nil && req.data == nil {
filled = true
// Decode the node data content and update the request
node, err := decodeNode(result.Hash[:], result.Data)
if err != nil {
return err
}
req.data = result.Data
// Create and schedule a request for all the children nodes
requests, err := s.children(req, node)
if err != nil {
return err
}
if len(requests) == 0 && req.deps == 0 {
s.commit(req)
} else {
req.deps += len(requests)
for _, child := range requests {
s.schedule(child)
}
}
}
if !filled {
return ErrAlreadyProcessed
}
return nil
}
// Commit flushes the data stored in the internal membatch out to persistent
// storage, returning any occurred error.
func (s *Sync) Commit(dbw ethdb.Batch) error {
// Dump the membatch into a database dbw
for key, value := range s.membatch.nodes {
rawdb.WriteTrieNode(dbw, key, value)
if s.bloom != nil {
s.bloom.Add(key[:])
}
}
for key, value := range s.membatch.codes {
rawdb.WriteCode(dbw, key, value)
if s.bloom != nil {
s.bloom.Add(key[:])
}
}
// Drop the membatch data and return
s.membatch = newSyncMemBatch()
return nil
}
// Pending returns the number of state entries currently pending for download.
func (s *Sync) Pending() int {
return len(s.nodeReqs) + len(s.codeReqs)
}
// schedule inserts a new state retrieval request into the fetch queue. If there
// is already a pending request for this node, the new request will be discarded
// and only a parent reference added to the old one.
func (s *Sync) schedule(req *request) {
var reqset = s.nodeReqs
if req.code {
reqset = s.codeReqs
}
// If we're already requesting this node, add a new reference and stop
if old, ok := reqset[req.hash]; ok {
old.parents = append(old.parents, req.parents...)
return
}
reqset[req.hash] = req
// Schedule the request for future retrieval. This queue is shared
// by both node requests and code requests. It can happen that there
// is a trie node and code has same hash. In this case two elements
// with same hash and same or different depth will be pushed. But it's
// ok the worst case is the second response will be treated as duplicated.
prio := int64(len(req.path)) << 56 // depth >= 128 will never happen, storage leaves will be included in their parents
for i := 0; i < 14 && i < len(req.path); i++ {
prio |= int64(15-req.path[i]) << (52 - i*4) // 15-nibble => lexicographic order
}
s.queue.Push(req.hash, prio)
}
// children retrieves all the missing children of a state trie entry for future
// retrieval scheduling.
func (s *Sync) children(req *request, object node) ([]*request, error) {
// Gather all the children of the node, irrelevant whether known or not
type child struct {
path []byte
node node
}
var children []child
switch node := (object).(type) {
case *shortNode:
key := node.Key
if hasTerm(key) {
key = key[:len(key)-1]
}
children = []child{{
node: node.Val,
path: append(append([]byte(nil), req.path...), key...),
}}
case *fullNode:
for i := 0; i < 17; i++ {
if node.Children[i] != nil {
children = append(children, child{
node: node.Children[i],
path: append(append([]byte(nil), req.path...), byte(i)),
})
}
}
default:
panic(fmt.Sprintf("unknown node: %+v", node))
}
// Iterate over the children, and request all unknown ones
requests := make([]*request, 0, len(children))
for _, child := range children {
// Notify any external watcher of a new key/value node
if req.callback != nil {
if node, ok := (child.node).(valueNode); ok {
var paths [][]byte
if len(child.path) == 2*common.HashLength {
paths = append(paths, hexToKeybytes(child.path))
} else if len(child.path) == 4*common.HashLength {
paths = append(paths, hexToKeybytes(child.path[:2*common.HashLength]))
paths = append(paths, hexToKeybytes(child.path[2*common.HashLength:]))
}
if err := req.callback(paths, child.path, node, req.hash); err != nil {
return nil, err
}
}
}
// If the child references another node, resolve or schedule
if node, ok := (child.node).(hashNode); ok {
// Try to resolve the node from the local database
hash := common.BytesToHash(node)
if s.membatch.hasNode(hash) {
continue
}
if s.bloom == nil || s.bloom.Contains(node) {
// Bloom filter says this might be a duplicate, double check.
// If database says yes, then at least the trie node is present
// and we hold the assumption that it's NOT legacy contract code.
if blob := rawdb.ReadTrieNode(s.database, hash); len(blob) > 0 {
continue
}
// False positive, bump fault meter
bloomFaultMeter.Mark(1)
}
// Locally unknown node, schedule for retrieval
requests = append(requests, &request{
path: child.path,
hash: hash,
parents: []*request{req},
callback: req.callback,
})
}
}
return requests, nil
}
// commit finalizes a retrieval request and stores it into the membatch. If any
// of the referencing parent requests complete due to this commit, they are also
// committed themselves.
func (s *Sync) commit(req *request) (err error) {
// Write the node content to the membatch
if req.code {
s.membatch.codes[req.hash] = req.data
delete(s.codeReqs, req.hash)
s.fetches[len(req.path)]--
} else {
s.membatch.nodes[req.hash] = req.data
delete(s.nodeReqs, req.hash)
s.fetches[len(req.path)]--
}
// Check all parents for completion
for _, parent := range req.parents {
parent.deps--
if parent.deps == 0 {
if err := s.commit(parent); err != nil {
return err
}
}
}
return nil
}