-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathstochastic_perturbation.py
39 lines (24 loc) · 1.09 KB
/
stochastic_perturbation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from random import gauss
from data_from_ng import N, N_M, N_U
# I am very concerned that values too close to zero will result in precision problems
TOO_SMALL = 0.00001
# This does just one number at a time, but it has a guard to guarantee that the number is greater than TOO_SMALL
def generate_scalar_perturbation(sigma):
result = 0.0
while abs(result) < TOO_SMALL:
result = gauss(0.0, sigma)
return result
# This does a tuple
def generate_tuple_perturbation(sigma):
return tuple([generate_scalar_perturbation(sigma) for _ in range(0, N)])
# This does N_M tuples
def generate_x_perturbation(sigma):
# number of components in x is N_M
return [generate_scalar_perturbation(sigma) for _ in range(0, N_M)]
# This does N_U tuples
def generate_theta_perturbation(sigma):
# number of components in theta is N_U
return [generate_perturbation(sigma) for _ in range(0, N_U)]
# This does a whole perturbation all at once for all of the (N_M + N_U) * N components
def generate_perturbation(sigma):
return generate_x_perturbation(sigma), generate_theta_perturbation(sigma)