layout |
---|
default |
Convolutional (Conv) layer
Accepts as input:
- feature vector of size
<a href="http://www.codecogs.com/eqnedit.php?latex=W_1&space;\times&space;H_1&space;\times&space;D_1" target="_blank"><img src="http://latex.codecogs.com/gif.latex?W_1&space;\times&space;H_1&space;\times&space;D_1" title="W_1 \times H_1 \times D_1" /></a> </li> <li>filters of size <a href="http://www.codecogs.com/eqnedit.php?latex=F&space;\times&space;F&space;\times&space;D_1&space;\times&space;D_2" target="_blank"><img src="http://latex.codecogs.com/gif.latex?F&space;\times&space;F&space;\times&space;D_1&space;\times&space;D_2" title="F \times F \times D_1 \times D_2" /></a> </li> <li>biases of length <a href="http://www.codecogs.com/eqnedit.php?latex=D_2" target="_blank"><img src="http://latex.codecogs.com/gif.latex?D_2" title="D_2" /></a> </li> <li>stride <a href="http://www.codecogs.com/eqnedit.php?latex=S" target="_blank"><img src="http://latex.codecogs.com/gif.latex?S" title="S" /></a> </li> <li>amount of zero padding <a href="http://www.codecogs.com/eqnedit.php?latex=P" target="_blank"><img src="http://latex.codecogs.com/gif.latex?P" title="P" /></a> </li>
, where
-
<a href="http://www.codecogs.com/eqnedit.php?latex=W_2&space;=&space;\frac{W_1-F+2P}{S}+1" target="_blank"><img src="http://latex.codecogs.com/gif.latex?W_2&space;=&space;\frac{W_1-F+2P}{S}+1" title="W_2 = \frac{W_1-F+2P}{S}+1" /></a> </li> <li> <a href="http://www.codecogs.com/eqnedit.php?latex=H_2&space;=&space;\frac{H_1-F+2P}{S}+1" target="_blank"><img src="http://latex.codecogs.com/gif.latex?H_2&space;=&space;\frac{H_1-F+2P}{S}+1" title="H_2 = \frac{H_1-F+2P}{S}+1" /></a> </li>
of the d-th filter and the padded input.
source
Stride
The amount by which a filter shifts spatially when convolving it with a feature vector.
source
image source
Dilation
A filter is dilated by a factor
by inserting in every one of its channels independently
zeros between the filter elements.
source
image source
Fully connected (FC) layer
In practice, FC layers are implemented using a convolutional layer. To see how this might be possible, note that when an input feature vector of size
is convolved with a filter bank of size
, it results in an output feature vector of size
. Since the convolution is valid and the filter can not move spatially, the operation is equivalent to a fully connected one. More over, when this feature vector of size 1x1xD_2 is convolved with another filter bank of size
, the result is of size
.
In this case, again, the convolution is done over a single spatial location and therefore equivalent to a fully connected layer.
source
image source
Linear classifier
This is implemented in practice by employing a fully connected layer of size
, where
is the number of classes. Each one of the filters of size
corresponds to a certain class and there are
classifiers, one for each class.
image source