-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
163 lines (129 loc) · 4.44 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# -*- coding: utf-8 -*-
# ---------------------
import os
import torch
import torch.distributed as dist
import signal
import logging
from conf import Conf
import time
import click
import torch.backends.cudnn as cudnn
import deepspeed as ds
from trainer_pretrain import Trainer_PT
from trainer_finetune import Trainer_FT
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
@click.command()
@click.option('--exp_name', type=str, default=None)
@click.option('--local_rank', type=int, default=0)
@click.option('--resume', type=bool, default=False)
@click.option('--mode', type=click.Choice(['run', 'test'],
case_sensitive=False), default="run")
@click.option('--test_ck', type=click.Choice(['last', 'best'], case_sensitive=False), default="last")
@click.option('--conf_file_path', type=str, default=None)
@click.option('--seed', type=int, default=None)
def main(exp_name, local_rank, resume, mode, test_ck, conf_file_path, seed):
# type: (str, int, bool, str, str, str, int) -> None
assert torch.backends.cudnn.enabled, "Running without cuDNN is discouraged"
# if `exp_name` is None,
# ask the user to enter it
if exp_name is None:
exp_name = input('>> experiment name: ')
# if `exp_name` contains '!',
# `log_each_step` becomes `False`
log_each_step = True
if '!' in exp_name:
exp_name = exp_name.replace('!', '')
log_each_step = False
# if `exp_name` contains a '@' character,
# the number following '@' is considered as
# the desired random seed for the experiment
split = exp_name.split('@')
if len(split) == 2:
seed = int(split[1])
exp_name = split[0]
if mode == "test":
resume = True
cnf = Conf(conf_file_path=conf_file_path, seed=seed,
exp_name=exp_name, resume=resume, log_each_step=log_each_step)
global Trainer
Trainer = Trainer_FT if cnf.finetune else Trainer_PT
# Setup logging
logging.basicConfig(
format='[%(asctime)s] [p%(process)s] [%(pathname)s:%(lineno)d] [%(levelname)s] %(message)s',
level=logging.INFO,
)
print(f'\n▶ Starting Experiment \'{exp_name}\' [seed: {cnf.seed}]')
cnf_attrs = vars(cnf)
for k in cnf_attrs:
s = f'{k} : {cnf_attrs[k]}'
logging.info(s)
# Assuming 1 process == 1 GPU
if not cnf.slurm:
"""
python -m torch.distributed.launch --nproc_per_node=<N> --master_addr="127.0.0.1" --master_port=1234 main.py --exp_name=<exp_name>
deepspeed main.py --exp_name=<exp_name> --seed=6969
"""
DDP_Trainer(local_rank, cnf, mode, test_ck)
else:
rank = int(os.environ["SLURM_PROCID"])
DDP_Trainer(rank, cnf, mode, test_ck)
signal.signal(signal.SIGINT, cleanup)
signal.signal(signal.SIGTERM, cleanup)
def init_process(backend='nccl'):
""" Initialize the distributed environment. """
"""
WARNING: those variables are automatically set when calling torch.distributed.launch...
os.environ['MASTER_ADDR'] = host
os.environ['MASTER_PORT'] = str(port)
"""
print("============NODE================")
print(
os.environ.get('RANK', ""),
os.environ.get('WORLD_SIZE', ""),
os.environ.get('MASTER_ADDR', ""),
os.environ.get('MASTER_PORT', ""),
os.environ.get('LOCAL_RANK', ""),
)
print("================================")
ds.init_distributed(backend, auto_mpi_discovery=True)
def init_process_slurm(rank, size, gpu_id, jobid, backend='nccl'):
# type: (int, int, int, int, str) -> None
hostfile = f"dist_url.{jobid}.txt"
if rank == 0:
dist_url = "tcp://{}:{}".format(Conf.HOSTNAME, Conf.PORT)
with open(hostfile, "w") as f:
f.write(dist_url)
else:
while not os.path.exists(hostfile):
time.sleep(1)
with open(hostfile, "r") as f:
dist_url = f.read()
print(f"{dist_url}")
# required_env = ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"]
os.environ['RANK'] = str(rank)
os.environ['WORLD_SIZE'] = str(size)
os.environ['MASTER_ADDR'] = dist_url.split(":")[-1]
os.environ['MASTER_PORT'] = dist_url.split(":")[-2][2:]
os.environ['LOCAL_RANK'] = str(gpu_id)
ds.init_distributed(backend, init_method=dist_url, auto_mpi_discovery=False)
def cleanup():
dist.destroy_process_group()
def DDP_Trainer(rank, cnf, mode, test_ck):
# type: (int, Conf, str, str) -> None
if cnf.slurm:
init_process_slurm(rank, cnf.world_size, cnf.gpu_id, cnf.jobid)
else:
init_process()
cnf.setup_device_id(rank)
print(
f"Rank {rank + 1}/{cnf.world_size} process initialized.\n"
)
trainer = Trainer(cnf, rank)
if mode == "run":
trainer.run()
else:
trainer.test(modes=(mode, ), load_best=test_ck == "best")
if __name__ == '__main__':
main()