forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIRGenFunction.h
578 lines (488 loc) · 23.7 KB
/
IRGenFunction.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
//===--- IRGenFunction.h - IR Generation for Swift Functions ----*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the structure used to generate the IR body of a
// function.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_IRGEN_IRGENFUNCTION_H
#define SWIFT_IRGEN_IRGENFUNCTION_H
#include "swift/Basic/LLVM.h"
#include "swift/AST/Type.h"
#include "swift/SIL/SILLocation.h"
#include "swift/SIL/SILType.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/IR/CallingConv.h"
#include "IRBuilder.h"
#include "LocalTypeDataKind.h"
#include "DominancePoint.h"
namespace llvm {
class AllocaInst;
class CallSite;
class Constant;
class Function;
}
namespace swift {
class ArchetypeType;
class AssociatedTypeDecl;
class ClassDecl;
class ConstructorDecl;
class Decl;
class ExtensionDecl;
class FuncDecl;
class EnumElementDecl;
class EnumType;
class Pattern;
class PatternBindingDecl;
class SILDebugScope;
class SILType;
class SourceLoc;
class StructType;
class Substitution;
class ValueDecl;
class VarDecl;
namespace Lowering {
class TypeConverter;
}
namespace irgen {
class Explosion;
class FunctionRef;
class HeapLayout;
class HeapNonFixedOffsets;
class IRGenModule;
class LinkEntity;
class LocalTypeDataCache;
class Scope;
class TypeInfo;
enum class ValueWitness : unsigned;
enum class ReferenceCounting : unsigned char;
/// IRGenFunction - Primary class for emitting LLVM instructions for a
/// specific function.
class IRGenFunction {
public:
IRGenModule &IGM;
IRBuilder Builder;
llvm::Function *CurFn;
ModuleDecl *getSwiftModule() const;
SILModule &getSILModule() const;
Lowering::TypeConverter &getSILTypes() const;
IRGenFunction(IRGenModule &IGM, llvm::Function *fn,
const SILDebugScope *DbgScope = nullptr,
Optional<SILLocation> DbgLoc = None);
~IRGenFunction();
void unimplemented(SourceLoc Loc, StringRef Message);
friend class Scope;
//--- Function prologue and epilogue -------------------------------------------
public:
Explosion collectParameters();
void emitScalarReturn(SILType resultTy, Explosion &scalars,
bool isSwiftCCReturn);
void emitScalarReturn(llvm::Type *resultTy, Explosion &scalars);
void emitBBForReturn();
bool emitBranchToReturnBB();
/// Return the error result slot, given an error type. There's
/// always only one error type.
Address getErrorResultSlot(SILType errorType);
/// Return the error result slot provided by the caller.
Address getCallerErrorResultSlot();
/// Set the error result slot.
void setErrorResultSlot(llvm::Value *address);
private:
void emitPrologue();
void emitEpilogue();
Address ReturnSlot;
llvm::BasicBlock *ReturnBB;
llvm::Value *ErrorResultSlot = nullptr;
//--- Helper methods -----------------------------------------------------------
public:
Address createAlloca(llvm::Type *ty, Alignment align,
const llvm::Twine &name);
Address createAlloca(llvm::Type *ty, llvm::Value *ArraySize, Alignment align,
const llvm::Twine &name);
Address createFixedSizeBufferAlloca(const llvm::Twine &name);
llvm::BasicBlock *createBasicBlock(const llvm::Twine &Name);
const TypeInfo &getTypeInfoForUnlowered(Type subst);
const TypeInfo &getTypeInfoForUnlowered(AbstractionPattern orig, Type subst);
const TypeInfo &getTypeInfoForUnlowered(AbstractionPattern orig,
CanType subst);
const TypeInfo &getTypeInfoForLowered(CanType T);
const TypeInfo &getTypeInfo(SILType T);
void emitMemCpy(llvm::Value *dest, llvm::Value *src,
Size size, Alignment align);
void emitMemCpy(llvm::Value *dest, llvm::Value *src,
llvm::Value *size, Alignment align);
void emitMemCpy(Address dest, Address src, Size size);
void emitMemCpy(Address dest, Address src, llvm::Value *size);
llvm::Value *emitByteOffsetGEP(llvm::Value *base, llvm::Value *offset,
llvm::Type *objectType,
const llvm::Twine &name = "");
Address emitByteOffsetGEP(llvm::Value *base, llvm::Value *offset,
const TypeInfo &type,
const llvm::Twine &name = "");
void emitStoreOfRelativeIndirectablePointer(llvm::Value *value,
Address addr,
bool isFar);
llvm::Value *
emitLoadOfRelativeIndirectablePointer(Address addr, bool isFar,
llvm::PointerType *expectedType,
const llvm::Twine &name = "");
llvm::Value *emitAllocObjectCall(llvm::Value *metadata, llvm::Value *size,
llvm::Value *alignMask,
const llvm::Twine &name = "");
llvm::Value *emitInitStackObjectCall(llvm::Value *metadata,
llvm::Value *object,
const llvm::Twine &name = "");
llvm::Value *emitVerifyEndOfLifetimeCall(llvm::Value *object,
const llvm::Twine &name = "");
llvm::Value *emitAllocRawCall(llvm::Value *size, llvm::Value *alignMask,
const llvm::Twine &name ="");
void emitDeallocRawCall(llvm::Value *pointer, llvm::Value *size,
llvm::Value *alignMask);
void emitAllocBoxCall(llvm::Value *typeMetadata,
llvm::Value *&box,
llvm::Value *&valueAddress);
void emitMakeBoxUniqueCall(llvm::Value *box, llvm::Value *typeMetadata,
llvm::Value *alignMask, llvm::Value *&outBox,
llvm::Value *&outValueAddress);
void emitDeallocBoxCall(llvm::Value *box, llvm::Value *typeMetadata);
void emitTSanInoutAccessCall(llvm::Value *address);
llvm::Value *emitProjectBoxCall(llvm::Value *box, llvm::Value *typeMetadata);
// Emit a reference to the canonical type metadata record for the given AST
// type. This can be used to identify the type at runtime. For types with
// abstraction difference, the metadata contains the layout information for
// values in the maximally-abstracted representation of the type; this is
// correct for all uses of reabstractable values in opaque contexts.
llvm::Value *emitTypeMetadataRef(CanType type);
// Emit a reference to a type layout record for the given type. The referenced
// data is enough to lay out an aggregate containing a value of the type, but
// can't uniquely represent the type or perform value witness operations on
// it.
llvm::Value *emitTypeLayoutRef(SILType type);
// Emit a reference to a metadata object that can be used for layout, but
// cannot be used to identify a type. This will produce a layout appropriate
// to the abstraction level of the given type. It may be able to avoid runtime
// calls if there is a standard metadata object with the correct layout for
// the type.
//
// TODO: It might be better to return just a value witness table reference
// here, since for some types it's easier to get a shared reference to one
// than a metadata reference, and it would be more type-safe.
llvm::Value *emitTypeMetadataRefForLayout(SILType type);
llvm::Value *emitValueWitnessTableRef(CanType type);
llvm::Value *emitValueWitnessTableRefForLayout(SILType type);
llvm::Value *emitValueWitnessTableRefForMetadata(llvm::Value *metadata);
llvm::Value *emitValueWitness(CanType type, ValueWitness index);
llvm::Value *emitValueWitnessForLayout(SILType type, ValueWitness index);
/// Emit a load of a reference to the given Objective-C selector.
llvm::Value *emitObjCSelectorRefLoad(StringRef selector);
/// Return the SILDebugScope for this function.
const SILDebugScope *getDebugScope() const { return DbgScope; }
llvm::Value *coerceValue(llvm::Value *value, llvm::Type *toTy,
const llvm::DataLayout &);
/// Mark a load as invariant.
void setInvariantLoad(llvm::LoadInst *load);
/// Mark a load as dereferenceable to `size` bytes.
void setDereferenceableLoad(llvm::LoadInst *load, unsigned size);
private:
llvm::Instruction *AllocaIP;
const SILDebugScope *DbgScope;
//--- Reference-counting methods -----------------------------------------------
public:
// Returns the default atomicity of the module.
Atomicity getDefaultAtomicity();
llvm::Value *emitUnmanagedAlloc(const HeapLayout &layout,
const llvm::Twine &name,
llvm::Constant *captureDescriptor,
const HeapNonFixedOffsets *offsets = 0);
// Functions that don't care about the reference-counting style.
void emitFixLifetime(llvm::Value *value);
// Routines that are generic over the reference-counting style:
// - strong references
void emitStrongRetain(llvm::Value *value, ReferenceCounting refcounting,
Atomicity atomicity);
void emitStrongRelease(llvm::Value *value, ReferenceCounting refcounting,
Atomicity atomicity);
llvm::Value *emitLoadRefcountedPtr(Address addr, ReferenceCounting style);
// - unowned references
void emitUnownedRetain(llvm::Value *value, ReferenceCounting style,
Atomicity atomicity);
void emitUnownedRelease(llvm::Value *value, ReferenceCounting style,
Atomicity atomicity);
void emitStrongRetainUnowned(llvm::Value *value, ReferenceCounting style,
Atomicity atomicity);
void emitStrongRetainAndUnownedRelease(llvm::Value *value,
ReferenceCounting style,
Atomicity atomicity);
void emitUnownedInit(llvm::Value *val, Address dest, ReferenceCounting style);
void emitUnownedAssign(llvm::Value *value, Address dest,
ReferenceCounting style);
void emitUnownedCopyInit(Address destAddr, Address srcAddr,
ReferenceCounting style);
void emitUnownedTakeInit(Address destAddr, Address srcAddr,
ReferenceCounting style);
void emitUnownedCopyAssign(Address destAddr, Address srcAddr,
ReferenceCounting style);
void emitUnownedTakeAssign(Address destAddr, Address srcAddr,
ReferenceCounting style);
llvm::Value *emitUnownedLoadStrong(Address src, llvm::Type *resultType,
ReferenceCounting style);
llvm::Value *emitUnownedTakeStrong(Address src, llvm::Type *resultType,
ReferenceCounting style);
void emitUnownedDestroy(Address addr, ReferenceCounting style);
llvm::Value *getUnownedExtraInhabitantIndex(Address src,
ReferenceCounting style);
void storeUnownedExtraInhabitant(llvm::Value *index, Address dest,
ReferenceCounting style);
// - weak references
void emitWeakInit(llvm::Value *ref, Address dest, ReferenceCounting style);
void emitWeakAssign(llvm::Value *ref, Address dest, ReferenceCounting style);
void emitWeakCopyInit(Address destAddr, Address srcAddr,
ReferenceCounting style);
void emitWeakTakeInit(Address destAddr, Address srcAddr,
ReferenceCounting style);
void emitWeakCopyAssign(Address destAddr, Address srcAddr,
ReferenceCounting style);
void emitWeakTakeAssign(Address destAddr, Address srcAddr,
ReferenceCounting style);
llvm::Value *emitWeakLoadStrong(Address src, llvm::Type *resultType,
ReferenceCounting style);
llvm::Value *emitWeakTakeStrong(Address src, llvm::Type *resultType,
ReferenceCounting style);
void emitWeakDestroy(Address addr, ReferenceCounting style);
// Routines for the Swift native reference-counting style.
// - strong references
void emitNativeStrongAssign(llvm::Value *value, Address addr);
void emitNativeStrongInit(llvm::Value *value, Address addr);
void emitNativeStrongRetain(llvm::Value *value, Atomicity atomicity);
void emitNativeStrongRelease(llvm::Value *value, Atomicity atomicity);
void emitNativeSetDeallocating(llvm::Value *value);
// - unowned references
void emitNativeUnownedRetain(llvm::Value *value, Atomicity atomicity);
void emitNativeUnownedRelease(llvm::Value *value, Atomicity atomicity);
void emitNativeStrongRetainUnowned(llvm::Value *value, Atomicity atomicity);
void emitNativeStrongRetainAndUnownedRelease(llvm::Value *value,
Atomicity atomicity);
void emitNativeUnownedInit(llvm::Value *val, Address dest);
void emitNativeUnownedAssign(llvm::Value *value, Address dest);
void emitNativeUnownedCopyInit(Address destAddr, Address srcAddr);
void emitNativeUnownedTakeInit(Address destAddr, Address srcAddr);
void emitNativeUnownedCopyAssign(Address destAddr, Address srcAddr);
void emitNativeUnownedTakeAssign(Address destAddr, Address srcAddr);
llvm::Value *emitNativeUnownedLoadStrong(Address src, llvm::Type *resultType);
llvm::Value *emitNativeUnownedTakeStrong(Address src, llvm::Type *resultType);
void emitNativeUnownedDestroy(Address addr);
// - weak references
void emitNativeWeakInit(llvm::Value *value, Address dest);
void emitNativeWeakAssign(llvm::Value *value, Address dest);
llvm::Value *emitNativeWeakLoadStrong(Address src, llvm::Type *type);
llvm::Value *emitNativeWeakTakeStrong(Address src, llvm::Type *type);
void emitNativeWeakDestroy(Address addr);
void emitNativeWeakCopyInit(Address destAddr, Address srcAddr);
void emitNativeWeakTakeInit(Address destAddr, Address srcAddr);
void emitNativeWeakCopyAssign(Address destAddr, Address srcAddr);
void emitNativeWeakTakeAssign(Address destAddr, Address srcAddr);
// - other operations
llvm::Value *emitNativeTryPin(llvm::Value *object, Atomicity atomicity);
void emitNativeUnpin(llvm::Value *handle, Atomicity atomicity);
// Routines for the ObjC reference-counting style.
void emitObjCStrongRetain(llvm::Value *value);
llvm::Value *emitObjCRetainCall(llvm::Value *value);
llvm::Value *emitObjCAutoreleaseCall(llvm::Value *value);
void emitObjCStrongRelease(llvm::Value *value);
llvm::Value *emitBlockCopyCall(llvm::Value *value);
void emitBlockRelease(llvm::Value *value);
// Routines for an unknown reference-counting style (meaning,
// dynamically something compatible with either the ObjC or Swift styles).
// - strong references
void emitUnknownStrongRetain(llvm::Value *value, Atomicity atomicity);
void emitUnknownStrongRelease(llvm::Value *value, Atomicity atomicity);
// - unowned references
void emitUnknownUnownedInit(llvm::Value *val, Address dest);
void emitUnknownUnownedAssign(llvm::Value *value, Address dest);
void emitUnknownUnownedCopyInit(Address destAddr, Address srcAddr);
void emitUnknownUnownedTakeInit(Address destAddr, Address srcAddr);
void emitUnknownUnownedCopyAssign(Address destAddr, Address srcAddr);
void emitUnknownUnownedTakeAssign(Address destAddr, Address srcAddr);
llvm::Value *emitUnknownUnownedLoadStrong(Address src, llvm::Type *resultTy);
llvm::Value *emitUnknownUnownedTakeStrong(Address src, llvm::Type *resultTy);
void emitUnknownUnownedDestroy(Address addr);
// - weak references
void emitUnknownWeakDestroy(Address addr);
void emitUnknownWeakCopyInit(Address destAddr, Address srcAddr);
void emitUnknownWeakTakeInit(Address destAddr, Address srcAddr);
void emitUnknownWeakCopyAssign(Address destAddr, Address srcAddr);
void emitUnknownWeakTakeAssign(Address destAddr, Address srcAddr);
void emitUnknownWeakInit(llvm::Value *value, Address dest);
void emitUnknownWeakAssign(llvm::Value *value, Address dest);
llvm::Value *emitUnknownWeakLoadStrong(Address src, llvm::Type *type);
llvm::Value *emitUnknownWeakTakeStrong(Address src, llvm::Type *type);
// Routines for the Builtin.NativeObject reference-counting style.
void emitBridgeStrongRetain(llvm::Value *value, Atomicity atomicity);
void emitBridgeStrongRelease(llvm::Value *value, Atomicity atomicity);
// Routines for the ErrorType reference-counting style.
void emitErrorStrongRetain(llvm::Value *value);
void emitErrorStrongRelease(llvm::Value *value);
llvm::Value *emitIsUniqueCall(llvm::Value *value, SourceLoc loc,
bool isNonNull, bool checkPinned);
//--- Expression emission ------------------------------------------------------
public:
void emitFakeExplosion(const TypeInfo &type, Explosion &explosion);
//--- Declaration emission -----------------------------------------------------
public:
void bindArchetype(ArchetypeType *type,
llvm::Value *metadata,
ArrayRef<llvm::Value*> wtables);
//--- Type emission ------------------------------------------------------------
public:
/// Look up a local type data reference, returning null if no entry was
/// found. This will emit code to materialize the reference if an
/// "abstract" entry is present.
llvm::Value *tryGetLocalTypeData(CanType type, LocalTypeDataKind kind) {
return tryGetLocalTypeData(LocalTypeDataKey{type, kind});
}
llvm::Value *tryGetLocalTypeData(LocalTypeDataKey key);
/// Look up a local type data reference, returning null if no entry was
/// found or if the only viable entries are abstract. This will never
/// emit code.
llvm::Value *tryGetConcreteLocalTypeData(LocalTypeDataKey key);
/// Retrieve a local type data reference which is known to exist.
llvm::Value *getLocalTypeData(CanType type, LocalTypeDataKind kind);
/// Add a local type-metadata reference at a point which definitely
/// dominates all of its uses.
void setUnscopedLocalTypeData(CanType type, LocalTypeDataKind kind,
llvm::Value *data) {
setUnscopedLocalTypeData(LocalTypeDataKey{type, kind}, data);
}
void setUnscopedLocalTypeData(LocalTypeDataKey key, llvm::Value *data);
/// Add a local type-metadata reference, valid at the current insertion
/// point.
void setScopedLocalTypeData(CanType type, LocalTypeDataKind kind,
llvm::Value *data) {
setScopedLocalTypeData(LocalTypeDataKey{type, kind}, data);
}
void setScopedLocalTypeData(LocalTypeDataKey key, llvm::Value *data);
/// The same as tryGetLocalTypeData, just for the Layout metadata.
///
/// We use a separate function name for this to clarify that you should
/// only ever be looking type metadata for a lowered SILType for the
/// purposes of local layout (e.g. of a tuple).
llvm::Value *tryGetLocalTypeDataForLayout(SILType type,
LocalTypeDataKind kind) {
return tryGetLocalTypeData(type.getSwiftRValueType(), kind);
}
/// Add a local type-metadata reference, which is valid for the containing
/// block.
void setScopedLocalTypeDataForLayout(SILType type, LocalTypeDataKind kind,
llvm::Value *data) {
setScopedLocalTypeData(type.getSwiftRValueType(), kind, data);
}
/// Given a concrete type metadata node, add all the local type data
/// that we can reach from it.
void bindLocalTypeDataFromTypeMetadata(CanType type, IsExact_t isExact,
llvm::Value *metadata);
void setDominanceResolver(DominanceResolverFunction resolver) {
assert(DominanceResolver == nullptr);
DominanceResolver = resolver;
}
bool isActiveDominancePointDominatedBy(DominancePoint point) {
// If the point is universal, it dominates.
if (point.isUniversal()) return true;
assert(!ActiveDominancePoint.isUniversal() &&
"active dominance point is universal but there exists a"
"non-universal point?");
// If we don't have a resolver, we're emitting a simple helper
// function; just assume dominance.
if (!DominanceResolver) return true;
// Otherwise, ask the resolver.
return DominanceResolver(*this, ActiveDominancePoint, point);
}
/// Is the current dominance point conditional in some way not
/// tracked by the active dominance point?
///
/// This should only be used by the local type data cache code.
bool isConditionalDominancePoint() const {
return ConditionalDominance != nullptr;
}
void registerConditionalLocalTypeDataKey(LocalTypeDataKey key) {
assert(ConditionalDominance != nullptr &&
"not in a conditional dominance scope");
ConditionalDominance->registerConditionalLocalTypeDataKey(key);
}
/// Return the currently-active dominance point.
DominancePoint getActiveDominancePoint() const {
return ActiveDominancePoint;
}
/// A RAII object for temporarily changing the dominance of the active
/// definition point.
class DominanceScope {
IRGenFunction &IGF;
DominancePoint OldDominancePoint;
public:
explicit DominanceScope(IRGenFunction &IGF, DominancePoint newPoint)
: IGF(IGF), OldDominancePoint(IGF.ActiveDominancePoint) {
IGF.ActiveDominancePoint = newPoint;
assert(!newPoint.isOrdinary() || IGF.DominanceResolver);
}
DominanceScope(const DominanceScope &other) = delete;
DominanceScope &operator=(const DominanceScope &other) = delete;
~DominanceScope() {
IGF.ActiveDominancePoint = OldDominancePoint;
}
};
/// A RAII object for temporarily suppressing type-data caching at the
/// active definition point. Do this if you're adding local control flow
/// that isn't modeled by the dominance system.
class ConditionalDominanceScope {
IRGenFunction &IGF;
ConditionalDominanceScope *OldScope;
SmallVector<LocalTypeDataKey, 2> RegisteredKeys;
public:
explicit ConditionalDominanceScope(IRGenFunction &IGF)
: IGF(IGF), OldScope(IGF.ConditionalDominance) {
IGF.ConditionalDominance = this;
}
ConditionalDominanceScope(const ConditionalDominanceScope &other) = delete;
ConditionalDominanceScope &operator=(const ConditionalDominanceScope &other)
= delete;
void registerConditionalLocalTypeDataKey(LocalTypeDataKey key) {
RegisteredKeys.push_back(key);
}
~ConditionalDominanceScope();
};
/// The kind of value LocalSelf is.
enum LocalSelfKind {
/// An object reference.
ObjectReference,
/// A Swift metatype.
SwiftMetatype,
/// An ObjC metatype.
ObjCMetatype,
};
llvm::Value *getLocalSelfMetadata();
void setLocalSelfMetadata(llvm::Value *value, LocalSelfKind kind);
private:
LocalTypeDataCache &getOrCreateLocalTypeData();
void destroyLocalTypeData();
LocalTypeDataCache *LocalTypeData = nullptr;
/// The dominance resolver. This can be set at most once; when it's not
/// set, this emission must never have a non-null active definition point.
DominanceResolverFunction DominanceResolver = nullptr;
DominancePoint ActiveDominancePoint = DominancePoint::universal();
ConditionalDominanceScope *ConditionalDominance = nullptr;
/// The value that satisfies metadata lookups for dynamic Self.
llvm::Value *LocalSelf = nullptr;
LocalSelfKind SelfKind;
};
using ConditionalDominanceScope = IRGenFunction::ConditionalDominanceScope;
} // end namespace irgen
} // end namespace swift
#endif