-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathgconv.py
241 lines (204 loc) · 9.01 KB
/
gconv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# Modified from S4: https://github.com/HazyResearch/state-spaces/blob/main/src/models/sequence/ss/s4.py
# We will release the whole codebase upon acceptance.
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.utils as U
from einops import rearrange, repeat
from omegaconf import DictConfig
import opt_einsum as oe
import numpy as np
from IPython import embed
optimized = True
if optimized:
contract = oe.contract
else:
contract = torch.einsum
from src.models.nn import LinearActivation, Activation, Normalization
class GConv(nn.Module):
requires_length = True
def __init__(
self,
d_model,
d_state=64,
l_max=1, # Maximum length of sequence. Fine if not provided: the kernel will keep doubling in length until longer than sequence. However, this can be marginally slower if the true length is not a power of 2
channels=1, # maps 1-dim to C-dim
bidirectional=False,
# Arguments for FF
activation='gelu', # activation in between SS and FF
ln=False, # Extra normalization
postact=None, # activation after FF
initializer=None, # initializer on FF
weight_norm=False, # weight normalization on FF
hyper_act=None, # Use a "hypernetwork" multiplication
dropout=0.0,
transposed=True, # axis ordering (B, L, D) or (B, D, L)
verbose=False,
shift=False,
linear=False,
mode="cat_randn",
# SSM Kernel arguments
**kernel_args,
):
"""
d_state: the dimension of the state, also denoted by N
l_max: the maximum sequence length, also denoted by L
if this is not known at model creation, set l_max=1
channels: can be interpreted as a number of "heads"
bidirectional: bidirectional
dropout: standard dropout argument
transposed: choose backbone axis ordering of (B, L, H) or (B, H, L) [B=batch size, L=sequence length, H=hidden dimension]
Other options are all experimental and should not need to be configured
"""
super().__init__()
if verbose:
import src.utils.train
log = src.utils.train.get_logger(__name__)
log.info(f"Constructing S4 (H, N, L) = ({d_model}, {d_state}, {l_max})")
self.h = d_model
self.n = d_state
self.bidirectional = bidirectional
self.ln = ln
self.channels = channels
self.transposed = transposed
self.shift = shift
self.linear = linear
self.mode = mode
self.l_max = l_max
# optional multiplicative modulation GLU-style
# https://arxiv.org/abs/2002.05202
self.hyper = hyper_act is not None
if self.hyper:
channels *= 2
self.hyper_activation = Activation(hyper_act)
self.D = nn.Parameter(torch.randn(channels, self.h))
if self.bidirectional:
channels *= 2
# Pointwise
if not self.linear:
self.activation = Activation(activation)
dropout_fn = nn.Dropout2d if self.transposed else nn.Dropout
self.dropout = dropout_fn(dropout) if dropout > 0.0 else nn.Identity()
if self.ln:
self.norm = Normalization(self.h*self.channels, transposed=transposed)
else:
self.norm = nn.Identity()
# position-wise output transform to mix features
if not self.linear:
self.output_linear = LinearActivation(
self.h*self.channels,
self.h,
transposed=self.transposed,
initializer=initializer,
activation=postact,
activate=True,
weight_norm=weight_norm,
)
self.init_scale = kernel_args.get('init_scale', 0)
self.kernel_dim = kernel_args.get('kernel_dim', 64)
self.num_scales = kernel_args.get('n_scales', 1+math.ceil(math.log2(l_max/self.kernel_dim))-self.init_scale)
if self.num_scales is None:
self.num_scales = 1 + math.ceil(math.log2(l_max/self.kernel_dim)) - self.init_scale
self.kernel_list = nn.ParameterList()
decay_min = kernel_args.get('decay_min', 2)
decay_max = kernel_args.get('decay_max', 2)
for _ in range(self.num_scales):
if 'randn' in mode:
kernel = nn.Parameter(torch.randn(channels, self.h, self.kernel_dim))
elif 'cos' in mode:
kernel = nn.Parameter(torch.cat([torch.cos(torch.linspace(0, 2*i*math.pi, self.kernel_dim)).expand(channels, 1, self.kernel_dim) for i in range(self.h)], dim=1)[:, torch.randperm(self.h), :])
else:
raise ValueError(f"Unknown mode {mode}")
kernel._optim = {
'lr': kernel_args.get('lr', 0.001),
}
self.kernel_list.append(kernel)
if 'learnable' in mode:
self.decay = nn.Parameter(torch.rand(self.h) * (decay_max - decay_min) + decay_min)
if 'fixed' in mode:
self.decay.requires_grad = False
else:
self.decay._optim = {
'lr': kernel_args.get('lr', 0.001),
}
self.register_buffer('multiplier', torch.tensor(1.0))
else:
self.register_buffer('multiplier', torch.linspace(decay_min, decay_max, self.h).view(1, -1, 1))
self.register_buffer('kernel_norm', torch.ones(self.h, 1))
self.register_buffer('kernel_norm_initialized', torch.tensor(0, dtype=torch.bool))
def forward(self, u, state=None, **kwargs): # absorbs return_output and transformer src mask
"""
u: (B H L) if self.transposed else (B L H)
state: (H N) never needed unless you know what you're doing
Returns: same shape as u
"""
if not self.transposed: u = u.transpose(-1, -2)
L = u.size(-1)
kernel_list = []
interpolate_mode = 'nearest' if 'nearest' in self.mode else 'linear'
multiplier = self.multiplier
if 'sum' in self.mode:
for i in range(self.num_scales):
kernel = F.pad(
F.interpolate(
self.kernel_list[i],
scale_factor = 2**(i+self.init_scale),
mode = interpolate_mode,
),
(0, self.kernel_dim*2**(self.num_scales-1+self.init_scale) - self.kernel_dim*2**(i+self.init_scale)),
) * multiplier ** (self.num_scales - i - 1)
kernel_list.append(kernel)
k = sum(kernel_list)
elif 'cat' in self.mode:
for i in range(self.num_scales):
kernel = F.interpolate(
self.kernel_list[i],
scale_factor = 2**(max(0, i-1)+self.init_scale),
mode = interpolate_mode,
) * multiplier ** (self.num_scales - i - 1)
kernel_list.append(kernel)
k = torch.cat(kernel_list, dim=-1)
else:
raise ValueError(f"Unknown mode {self.mode}")
if 'learnable' in self.mode:
k = k * torch.exp(-self.decay.view(1, -1, 1)*torch.log(torch.arange(k.size(-1), device=k.device)+1).view(1, 1, -1))
if not self.kernel_norm_initialized:
self.kernel_norm = k.norm(dim=-1, keepdim=True).detach()
self.kernel_norm_initialized = torch.tensor(1, dtype=torch.bool, device=k.device)
print(f"Kernel norm: {self.kernel_norm.mean()}")
print(f"Kernel size: {k.size()}")
if k.size(-1) > L:
k = k[..., :L]
elif k.size(-1) < L:
k = F.pad(k, (0, L - k.size(-1)))
k = k / self.kernel_norm #* (L / self.l_max) ** 0.5
# Convolution
if self.bidirectional:
k0, k1 = rearrange(k, '(s c) h l -> s c h l', s=2)
k = F.pad(k0, (0, L)) \
+ F.pad(k1.flip(-1), (L, 0)) \
k_f = torch.fft.rfft(k, n=2*L) # (C H L)
u_f = torch.fft.rfft(u, n=2*L) # (B H L)
y_f = contract('bhl,chl->bchl', u_f, k_f) # k_f.unsqueeze(-4) * u_f.unsqueeze(-3) # (B C H L)
y = torch.fft.irfft(y_f, n=2*L)[..., :L] # (B C H L)
# Compute D term in state space equation - essentially a skip connection
y = y + contract('bhl,ch->bchl', u, self.D)
# Reshape to flatten channels
y = rearrange(y, '... c h l -> ... (c h) l')
if not self.linear:
y = self.dropout(self.activation(y))
if not self.transposed: y = y.transpose(-1, -2)
if not self.linear:
y = self.norm(y)
y = self.output_linear(y)
return y, None
@property
def d_state(self):
return self.h * self.n
@property
def d_output(self):
return self.h
@property
def state_to_tensor(self):
return lambda state: rearrange('... h n -> ... (h n)', state)