-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathcifar_resnet.py
257 lines (219 loc) · 10.3 KB
/
cifar_resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# -*- coding: utf-8 -*-
"""ResNet model for CIFAR.
# Reference:
- [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385)
"""
from __future__ import print_function
from __future__ import absolute_import
import warnings
from keras import layers, regularizers
from keras import backend as K
from keras.layers import Input
from keras.layers import Dense, Activation, Flatten, Conv2D, AveragePooling2D, GlobalAveragePooling2D, GlobalMaxPooling2D, BatchNormalization
from keras.models import Model
from keras.engine import Layer, InputSpec
from keras.engine.topology import get_source_inputs
from keras.utils import layer_utils, conv_utils
from keras.utils.data_utils import get_file
try:
from keras.utils.conv_utils import normalize_data_format
except ImportError:
from keras.backend import normalize_data_format
class ChannelPadding(Layer):
"""Zero-padding on channel axis.
# Arguments
padding: int, or tuple of int (length 2)
- If int:
How many zeros to add at the beginning and end of
the padding dimension (axis 1).
- If tuple of int (length 2):
How many zeros to add at the beginning and at the end of
the padding dimension (`(left_pad, right_pad)`).
"""
def __init__(self, padding=1, data_format=None, **kwargs):
super(ChannelPadding, self).__init__(**kwargs)
self.padding = conv_utils.normalize_tuple(padding, 2, 'padding')
self.data_format = normalize_data_format(data_format)
self.input_spec = InputSpec(ndim=4)
def compute_output_shape(self, input_shape):
axis = 1 if self.data_format == 'channels_first' else -1
if input_shape[axis] is None:
return input_shape
else:
length = input_shape[axis] + self.padding[0] + self.padding[1]
if axis == 1:
return input_shape[:1] + (length,) + input_shape[2:]
else:
return input_shape[:-1] + (length,)
def call(self, inputs):
pattern = [[0,0] for i in range(len(inputs.shape))]
axis = 1 if self.data_format == 'channels_first' else -1
pattern[axis] = self.padding
return K.tf.pad(inputs, pattern)
def get_config(self):
config = {'padding': self.padding, 'data_format': self.data_format}
base_config = super(ChannelPadding, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def simple_block(input_tensor, filters, prefix, kernel_size = 3, stride = 1,
regularizer = None, activation = 'relu', conv_shortcut = False, bn = True):
"""A block with shortcut connection.
# Arguments
input_tensor: input tensor
filters: tuple with number of input and output channels
prefix: prefix of layer names
kernel_size: default 3, the kernel size of conv layers
stride: stride of first conv layer in the block
regularizer: kernel regularizer
activation: name of the activation function to be used
conv_shortcut: boolean, specifying whether to use padding (False) or
convolution (True) at the shortcut
bn: boolean specifying whether to include BatchNormalization layers
# Returns
Output tensor for the block.
"""
if K.image_data_format() == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
conv_name_base = 'res' + prefix
bn_name_base = 'bn' + prefix
x = Conv2D(filters[1], kernel_size, padding='same', strides=(stride, stride),
kernel_regularizer = regularizer,
name=conv_name_base + 'x')(input_tensor)
if bn:
x = BatchNormalization(axis=bn_axis, name=bn_name_base + 'x')(x)
x = Activation(activation)(x)
x = Conv2D(filters[1], kernel_size, padding='same',
kernel_regularizer = regularizer,
name=conv_name_base + 'y')(x)
if bn:
x = BatchNormalization(axis=bn_axis, name=bn_name_base + 'y')(x)
shortcut = input_tensor
if (filters[0] != filters[1]) and conv_shortcut:
shortcut = Conv2D(filters[1], (1, 1), strides=(stride, stride),
kernel_regularizer = regularizer,
name=conv_name_base + 'z')(shortcut)
if bn:
shortcut = BatchNormalization(axis=bn_axis, name=bn_name_base + 'z')(shortcut)
else:
if stride > 1:
shortcut = AveragePooling2D((stride, stride), name='avg'+prefix)(shortcut)
if filters[0] < filters[1]:
shortcut = ChannelPadding(((filters[1] - filters[0]) // 2, filters[1] - filters[0] - (filters[1] - filters[0]) // 2),
name = 'pad'+prefix)(shortcut)
x = layers.add([x, shortcut])
x = Activation(activation)(x)
return x
def unit(input_tensor, filters, n, prefix, kernel_size = 3, stride = 1, **kwargs):
"""A stack of blocks.
# Arguments
input_tensor: input tensor
filters: tuple with number of input and output channels
n: number of blocks in the unit
prefix: prefix of layer names
kernel_size: default 3, the kernel size of conv layers
stride: stride of first conv layer in the unit
# Returns
Output tensor for the block.
"""
x = simple_block(input_tensor, filters, prefix + '1', kernel_size=kernel_size, stride=stride, **kwargs)
for i in range(1, n):
x = simple_block(x, [filters[1], filters[1]], prefix + str(i+1), kernel_size=kernel_size, **kwargs)
return x
def SmallResNet(n = 9, filters = [16, 32, 64],
include_top=True, weights=None,
input_tensor=None, input_shape=None,
pooling='avg', regularizer=regularizers.l2(0.0002), activation = 'relu',
top_activation='softmax',
conv_shortcut=False, bn=True,
classes=100, name=None):
"""Instantiates the CIFAR ResNet architecture described in section 4.2 of the paper.
# Arguments
n: number of blocks in each unit
filters: list of number of filters in each unit
include_top: whether to include the fully-connected
layer at the top of the network.
weights: `None` (random initialization)
or path to weights file.
input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
to use as image input for the model.
input_shape: optional shape tuple, only to be specified
if `include_top` is False (otherwise the input shape
has to be `(32, 32, 3)` (with `channels_last` data format)
or `(3, 32, 32)` (with `channels_first` data format).
It should have exactly 3 inputs channels.
pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional layer, and thus
the output of the model will be a 2D tensor.
- `max` means that global max pooling will
be applied.
regularizer: weight of kernel regularizer.
activation: name of the activation function to be used.
top_activation: name of the activation function to be used for the top layer.
conv_shortcut: boolean, specifying whether to use padding (False) or
convolution (True) at the shortcuts.
bn: boolean specifying whether to include BatchNormalization layers.
classes: optional number of classes to classify images
into, only to be specified if `include_top` is True, and
if no `weights` argument is specified.
# Returns
A Keras model instance.
# Raises
ValueError: in case of invalid argument for `weights`,
or invalid input shape.
"""
# Determine proper input shape
if input_shape is None:
if K.image_data_format() == 'channels_first':
input_shape = (3, 32, 32) if include_top and pooling is None else (3, None, None)
else:
input_shape = (32, 32, 3) if include_top and pooling is None else (None, None, 3)
# Build network
if input_tensor is None:
img_input = Input(shape=input_shape)
else:
if not K.is_keras_tensor(input_tensor):
img_input = Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
if K.image_data_format() == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
x = Conv2D(filters[0], (3, 3), padding='same', name='conv0', kernel_regularizer = regularizer)(img_input)
if bn:
x = BatchNormalization(axis=bn_axis, name='bn0')(x)
x = Activation(activation)(x)
x = unit(x, [filters[0], filters[0]], n, '1-', kernel_size = 3, stride = 1, regularizer=regularizer, activation=activation, conv_shortcut=conv_shortcut, bn=bn)
for i in range(1, len(filters)):
x = unit(x, [filters[i-1], filters[i]], n, str(i+1)+'-', kernel_size = 3, stride = 2, regularizer=regularizer, activation=activation, conv_shortcut=conv_shortcut, bn=bn)
if pooling == 'avg':
x = GlobalAveragePooling2D(name='avg_pool')(x)
elif pooling == 'max':
x = GlobalMaxPooling2D(name='max_pool')(x)
if include_top:
x = Dense(classes, activation=top_activation, name = 'embedding' if top_activation is None else 'prob', kernel_regularizer = regularizer)(x)
# Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if input_tensor is not None:
inputs = get_source_inputs(input_tensor)
else:
inputs = img_input
# Create model.
model = Model(inputs, x, name='cifar-resnet{}'.format(2*len(filters)*n) if name is None else name)
# load weights
if weights is not None:
model.load_weights(weights)
if K.image_data_format() == 'channels_first' and K.backend() == 'tensorflow':
warnings.warn('You are using the TensorFlow backend, yet you '
'are using the Theano '
'image data format convention '
'(`image_data_format="channels_first"`). '
'For best performance, set '
'`image_data_format="channels_last"` in '
'your Keras config '
'at ~/.keras/keras.json.')
return model