forked from aladdinpersson/Machine-Learning-Collection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLinearRegression_normal.py
71 lines (56 loc) · 2.4 KB
/
LinearRegression_normal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Import folder where sorting algorithms
import sys
import unittest
import numpy as np
# For importing from different folders
# OBS: This is supposed to be done with automated testing,
# hence relative to folder we want to import from
sys.path.append("ML/algorithms/linearregression")
# If run from local:
# sys.path.append('../../ML/algorithms/linearregression/')
from linear_regression_normal_equation import linear_regression_normal_equation
class TestLinearRegression_NormalEq(unittest.TestCase):
def setUp(self):
# test cases we want to run
self.X1 = np.array([[0, 1, 2]]).T
self.y1 = np.array([1, 2, 3])
self.W1_correct = np.array([[1, 1]])
self.X2 = np.array([[0, 1]]).T
self.y2 = np.array([1, 0])
self.W2_correct = np.array([[1, -1]])
self.X3 = np.array([[1, 2, 3], [1, 2, 4]]).T
self.y3 = np.array([5, 10, 18])
self.W3_correct = np.array([[0, 2, 3]])
self.X4 = np.array([[0, 0]]).T
self.y4 = np.array([0, 0])
self.W4_correct = np.array([[0, 0]])
self.X5 = np.array([[0, 1, 2, 3, 4, 5]]).T
self.y5 = np.array([0, 0.99, 2.01, 2.99, 4.01, 4.99])
self.W5_correct = np.array([[0, 1]])
def test_perfectpositiveslope(self):
W = linear_regression_normal_equation(self.X1, self.y1)
print(W.shape)
print(self.W1_correct.shape)
boolean_array = np.isclose(W, self.W1_correct)
self.assertTrue(boolean_array.all())
def test_perfectnegativeslope(self):
W = linear_regression_normal_equation(self.X2, self.y2)
boolean_array = np.isclose(W, self.W2_correct)
self.assertTrue(boolean_array.all())
def test_multipledimension(self):
W = linear_regression_normal_equation(self.X3, self.y3)
print(W)
print(self.W3_correct)
boolean_array = np.isclose(W, self.W3_correct)
self.assertTrue(boolean_array.all())
def test_zeros(self):
W = linear_regression_normal_equation(self.X4, self.y4)
boolean_array = np.isclose(W, self.W4_correct)
self.assertTrue(boolean_array.all())
def test_noisydata(self):
W = linear_regression_normal_equation(self.X5, self.y5)
boolean_array = np.isclose(W, self.W5_correct, atol=1e-3)
self.assertTrue(boolean_array.all())
if __name__ == "__main__":
print("Running Linear Regression Normal Equation tests:")
unittest.main()