forked from hasanirtiza/Pedestron
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_crowdhuman.py
226 lines (197 loc) · 8.25 KB
/
test_crowdhuman.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import argparse
import os
import os.path as osp
import shutil
import tempfile
import json
import time
import mmcv
import torch
import torch.distributed as dist
from mmcv.runner import load_checkpoint, get_dist_info
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmdet.apis import init_dist
from mmdet.core import results2json, coco_eval, wrap_fp16_model
from mmdet.datasets import build_dataloader, build_dataset
from mmdet.models import build_detector
from tools.crowdhuman.eval_demo import validate
def single_gpu_test(model, data_loader, show=False, save_img=False, save_img_dir=''):
model.eval()
results = []
dataset = data_loader.dataset
prog_bar = mmcv.ProgressBar(len(dataset))
for i, data in enumerate(data_loader):
with torch.no_grad():
result = model(return_loss=False, rescale=not show, **data)
results.append(result)
if show:
model.module.show_result(data, result, dataset.img_norm_cfg, save_result=save_img, result_name=save_img_dir + '/' + str(i)+'.jpg')
batch_size = data['img'][0].size(0)
for _ in range(batch_size):
prog_bar.update()
return results
def multi_gpu_test(model, data_loader, tmpdir=None):
model.eval()
results = []
dataset = data_loader.dataset
rank, world_size = get_dist_info()
if rank == 0:
prog_bar = mmcv.ProgressBar(len(dataset))
for i, data in enumerate(data_loader):
with torch.no_grad():
result = model(return_loss=False, rescale=True, **data)
results.append(result)
if rank == 0:
batch_size = data['img'][0].size(0)
for _ in range(batch_size * world_size):
prog_bar.update()
# collect results from all ranks
results = collect_results(results, len(dataset), tmpdir)
return results
def collect_results(result_part, size, tmpdir=None):
rank, world_size = get_dist_info()
# create a tmp dir if it is not specified
if tmpdir is None:
MAX_LEN = 512
# 32 is whitespace
dir_tensor = torch.full((MAX_LEN, ),
32,
dtype=torch.uint8,
device='cuda')
if rank == 0:
tmpdir = tempfile.mkdtemp()
tmpdir = torch.tensor(
bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda')
dir_tensor[:len(tmpdir)] = tmpdir
dist.broadcast(dir_tensor, 0)
tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip()
else:
mmcv.mkdir_or_exist(tmpdir)
# dump the part result to the dir
mmcv.dump(result_part, osp.join(tmpdir, 'part_{}.pkl'.format(rank)))
dist.barrier()
# collect all parts
if rank != 0:
return None
else:
# load results of all parts from tmp dir
part_list = []
for i in range(world_size):
part_file = osp.join(tmpdir, 'part_{}.pkl'.format(i))
part_list.append(mmcv.load(part_file))
# sort the results
ordered_results = []
for res in zip(*part_list):
ordered_results.extend(list(res))
# the dataloader may pad some samples
ordered_results = ordered_results[:size]
# remove tmp dir
shutil.rmtree(tmpdir)
return ordered_results
def parse_args():
parser = argparse.ArgumentParser(description='MMDet test detector')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument('checkpoint_start', type=int, default=1)
parser.add_argument('checkpoint_end', type=int, default=100)
parser.add_argument('--out', help='output result file')
parser.add_argument(
'--eval',
type=str,
nargs='+',
choices=['proposal', 'proposal_fast', 'bbox', 'segm', 'keypoints'],
help='eval types')
parser.add_argument('--show', action='store_true', help='show results')
parser.add_argument('--save_img', action='store_true', help='save result image')
parser.add_argument('--save_img_dir', type=str, help='the dir for result image', default='')
parser.add_argument('--tmpdir', help='tmp dir for writing some results')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--mean_teacher', action='store_true', help='test the mean teacher pth')
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def main():
args = parse_args()
if args.out is not None and not args.out.endswith(('.json', '.pickle')):
raise ValueError('The output file must be a pkl file.')
for i in range(args.checkpoint_start, args.checkpoint_end):
cfg = mmcv.Config.fromfile(args.config)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
cfg.model.pretrained = None
cfg.data.test.test_mode = True
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# build the dataloader
# TODO: support multiple images per gpu (only minor changes are needed)
dataset = build_dataset(cfg.data.test)
data_loader = build_dataloader(
dataset,
imgs_per_gpu=1,
workers_per_gpu=cfg.data.workers_per_gpu,
dist=distributed,
shuffle=False)
# build the model and load checkpoint
model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)
if not args.mean_teacher:
while not osp.exists(args.checkpoint + str(i) + '.pth'):
time.sleep(5)
while i+1 != args.checkpoint_end and not osp.exists(args.checkpoint + str(i+1) + '.pth'):
time.sleep(5)
checkpoint = load_checkpoint(model, args.checkpoint + str(i) + '.pth', map_location='cpu')
else:
while not osp.exists(args.checkpoint + str(i) + '.pth.stu'):
time.sleep(5)
while i+1 != args.checkpoint_end and not osp.exists(args.checkpoint + str(i+1) + '.pth.stu'):
time.sleep(5)
checkpoint = load_checkpoint(model, args.checkpoint + str(i) + '.pth.stu', map_location='cpu')
checkpoint['meta'] = dict()
# old versions did not save class info in checkpoints, this walkaround is
# for backward compatibility
if 'CLASSES' in checkpoint['meta']:
model.CLASSES = checkpoint['meta']['CLASSES']
else:
model.CLASSES = dataset.CLASSES
if not distributed:
model = MMDataParallel(model, device_ids=[0])
outputs = single_gpu_test(model, data_loader, args.show, args.save_img, args.save_img_dir)
else:
model = MMDistributedDataParallel(model.cuda())
outputs = multi_gpu_test(model, data_loader, args.tmpdir)
res = []
for id, boxes in enumerate(outputs):
boxes=boxes[0]
if type(boxes) == list:
boxes = boxes[0]
boxes[:, [2, 3]] -= boxes[:, [0, 1]]
if len(boxes) > 0:
for box in boxes:
# box[:4] = box[:4] / 0.6
temp = dict()
temp['image_id'] = id+1
temp['category_id'] = 1
temp['bbox'] = box[:4].tolist()
temp['score'] = float(box[4])
res.append(temp)
with open(args.out, 'w') as f:
json.dump(res, f)
MRs = validate('datasets/crowdhuman/validation.json', args.out)
print(MRs)
print('Checkpoint %d: [Reasonable: %.2f%%], [Bare: %.2f%%], [Partial: %.2f%%], [Heavy: %.2f%%]'
% (i, MRs[0] * 100, MRs[1] * 100, MRs[2] * 100, MRs[3] * 100))
if __name__ == '__main__':
main()