-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathimages.py
293 lines (243 loc) · 9.13 KB
/
images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from functools import partial
from dataclasses import dataclass
from typing import Callable, Dict, Optional
from timm.models.layers import to_2tuple
from fairseq.tasks import FairseqTask
from enum import Enum, auto
from .mae import PatchEmbed,get_2d_sincos_pos_embed_flexible,PatchEmbed_new
from .base import (
D2vModalityConfig,
ModalitySpecificEncoder,
get_alibi_bias,
MaskSeed,
)
from .modules import (
BlockEncoder,
Decoder2d,
FixedPositionalEncoder,
TransformerDecoder,
EncDecTransformerDecoder,
)
class Modality(Enum):
AUDIO = auto()
IMAGE = auto()
TEXT = auto()
@dataclass
class D2vImageConfig(D2vModalityConfig):
type: Modality = Modality.IMAGE
input_size: int = 224
in_chans: int = 3
patch_size: int = 16
embed_dim: int = 768
alibi_dims: int = 2
alibi_distance: str = "manhattan"
fixed_positions: bool = True
transformer_decoder: bool = False
enc_dec_transformer: bool = False
target_length: int = 1024
max_length: int = 768
class ImageEncoder(ModalitySpecificEncoder):
modality_cfg: D2vImageConfig
def __init__(
self,
modality_cfg: D2vImageConfig,
embed_dim: int,
make_block: Callable[[float, Optional[int], Optional[int]], nn.ModuleList],
norm_layer: Callable[[int], nn.LayerNorm],
layer_norm_first: bool,
alibi_biases: Dict,
task: Optional[FairseqTask],
):
if modality_cfg.in_chans == 1 :
img_size = (modality_cfg.target_length,128)
else:
img_size = to_2tuple(modality_cfg.input_size)
patch_size = to_2tuple(modality_cfg.patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) # number of patch -> 512
self.H = img_size[0] // patch_size[0] # 64
self.W = img_size[1] // patch_size[1] # 8
self.hw = (self.H,self.W)
# (B,512,768)
# note: we fix the variable length sequence problem here -> not limited to fixed length data
local_encoder = PatchEmbed_new(
img_size,
modality_cfg.patch_size,
modality_cfg.in_chans,
modality_cfg.embed_dim,
)
# CNN initialize
w = local_encoder.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
if modality_cfg.embed_dim != embed_dim:
local_encoder = nn.Sequential(
local_encoder,
nn.Linear(modality_cfg.embed_dim, embed_dim),
)
project_features = nn.Identity()
# note: max_length control the maximum time length of audio -> "64" for 10s, here we define it as 2min, you can change it yourself
max_length = modality_cfg.max_length
pos_embed = nn.Parameter(
torch.zeros(1, max_length*self.W, embed_dim), requires_grad=False
)
# side_n = int(num_patches ** 0.5)
# note: we fix the variable length sequence problem here -> support up to 2min audio
emb = get_2d_sincos_pos_embed_flexible(
pos_embed.shape[-1],
(max_length,self.W),
cls_token=False,
)
pos_embed.data.copy_(torch.from_numpy(emb[:max_length*self.W,:]).float().unsqueeze(0))
fixed_positional_encoder = (
FixedPositionalEncoder(pos_embed) if modality_cfg.fixed_positions else None
)
dpr = np.linspace(
modality_cfg.start_drop_path_rate,
modality_cfg.end_drop_path_rate,
modality_cfg.prenet_depth,
)
context_encoder = BlockEncoder(
nn.ModuleList(make_block(dpr[i]) for i in range(modality_cfg.prenet_depth)),
norm_layer(embed_dim) if not layer_norm_first else None,
layer_norm_first,
modality_cfg.prenet_layerdrop,
modality_cfg.prenet_dropout,
)
# EAT utilize the CNN decoder
if modality_cfg.transformer_decoder:
if modality_cfg.enc_dec_transformer:
decoder = EncDecTransformerDecoder(modality_cfg.decoder, embed_dim)
else:
dec_enc = BlockEncoder(
nn.ModuleList(
make_block(0, modality_cfg.decoder.decoder_dim, 8)
for _ in range(modality_cfg.decoder.decoder_layers)
),
None,
layer_norm_first,
0,
0,
)
decoder = TransformerDecoder(modality_cfg.decoder, embed_dim, dec_enc)
else:
decoder = (
Decoder2d(modality_cfg.decoder, embed_dim, self.H, self.W)
if modality_cfg.decoder is not None
else None
)
alibi_bias_fn = partial(
get_alibi_bias,
alibi_biases=alibi_biases,
heads=modality_cfg.num_alibi_heads,
dims=modality_cfg.alibi_dims,
distance=modality_cfg.alibi_distance,
)
super().__init__(
modality_cfg=modality_cfg,
embed_dim=embed_dim,
local_encoder=local_encoder,
project_features=project_features,
fixed_positional_encoder=fixed_positional_encoder,
relative_positional_encoder=None,
context_encoder=context_encoder,
decoder=decoder,
get_alibi_bias=alibi_bias_fn,
)
def reset_parameters(self):
super().reset_parameters()
if self.decoder is not None:
self.decoder.reset_parameters()
@torch.no_grad()
def patchify(self, imgs):
"""
imgs: (N, 3, H, W) audio: (N,1,H,W) 1024/16 = 64 128/16 = 8
x: (N, L, patch_size**2 *3)
"""
if self.modality_cfg.in_chans == 1:
p = self.modality_cfg.patch_size
h = imgs.shape[2] // p
w = imgs.shape[3] // p
#h,w = self.patch_embed.patch_hw
x = imgs.reshape(shape=(imgs.shape[0], 1, h, p, w, p))
x = torch.einsum('nchpwq->nhwpqc', x)
x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 1))
else:
p = self.modality_cfg.patch_size
h = w = imgs.shape[2] // p
x = imgs.reshape(shape=(imgs.shape[0], 3, h, p, w, p))
x = torch.einsum("nchpwq->nhwpqc", x)
x = x.reshape(shape=(imgs.shape[0], h * w, p ** 2 * 3))
return x
@torch.no_grad()
def unpatchify(self, x):
"""
x: (N, L, patch_size**2 *3)
imgs: (N, 3, H, W)
"""
p = self.modality_cfg.patch_size
h = w = int(x.shape[1] ** 0.5)
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, 3))
x = torch.einsum("nhwpqc->nchpwq", x)
imgs = x.reshape(shape=(x.shape[0], 3, h * p, h * p))
return imgs
def compute_mask(
self,
x,
padding_mask,
mask_seed: Optional[MaskSeed],
apply,
shape=None,
precomputed_mask=None,
):
mlen = self.modality_cfg.mask_length
if mlen <= 1:
return super().compute_mask(
x, padding_mask, mask_seed, apply, precomputed_mask
)
if precomputed_mask is not None:
mask = precomputed_mask
else:
from ..utils.data_utils import compute_block_mask_2d
if shape is not None:
B, L, D = shape
else:
B, L, D = x.shape
mask = compute_block_mask_2d(
shape=(B, L),
mask_prob=self.modality_cfg.mask_prob,
mask_length=self.modality_cfg.mask_length,
mask_prob_adjust=self.modality_cfg.mask_prob_adjust,
inverse_mask=self.modality_cfg.inverse_mask,
require_same_masks=True,
mask_dropout=self.modality_cfg.mask_dropout,
img_shape=self.hw
)
mask_info = self.make_maskinfo(x, mask, shape)
if apply:
x = self.apply_mask(x, mask_info)
return x, mask_info
def decoder_input(self, x, mask_info):
if (
not self.modality_cfg.transformer_decoder
or not self.modality_cfg.enc_dec_transformer
):
return super().decoder_input(x, mask_info)
inp_drop = self.modality_cfg.decoder.input_dropout
if inp_drop > 0:
x = F.dropout(x, inp_drop, training=self.training, inplace=True)
kv = x[:, self.modality_cfg.num_extra_tokens :]
assert self.fixed_positional_encoder is not None
pos = self.fixed_positional_encoder(x, None).expand(x.size(0), -1, -1)
mask = mask_info.mask.bool()
if self.modality_cfg.decoder.add_positions_all:
kv = kv + pos[~mask].view(kv.shape)
q = pos[mask].view(x.size(0), -1, x.size(-1))
return q, kv