forked from jax-ml/jax
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdifferentially_private_sgd.py
253 lines (210 loc) · 8.69 KB
/
differentially_private_sgd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Copyright 2019 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""JAX efficiently trains a differentially private conv net on MNIST.
This script contains a JAX implementation of Differentially Private Stochastic
Gradient Descent (https://arxiv.org/abs/1607.00133). DPSGD requires clipping
the per-example parameter gradients, which is non-trivial to implement
efficiently for convolutional neural networks. The JAX XLA compiler shines in
this setting by optimizing the minibatch-vectorized computation for
convolutional architectures. Train time takes a few seconds per epoch on a
commodity GPU.
This code depends on the `dp-accounting` package
Install instructions:
$ pip install dp-accounting
The results match those in the reference TensorFlow baseline implementation:
https://github.com/tensorflow/privacy/tree/master/tutorials
Example invocations:
# this non-private baseline should get ~99% acc
python -m examples.differentially_private_sgd \
--dpsgd=False \
--learning_rate=.1 \
--epochs=20 \
this private baseline should get ~95% acc
python -m examples.differentially_private_sgd \
--dpsgd=True \
--noise_multiplier=1.3 \
--l2_norm_clip=1.5 \
--epochs=15 \
--learning_rate=.25 \
# this private baseline should get ~96.6% acc
python -m examples.differentially_private_sgd \
--dpsgd=True \
--noise_multiplier=1.1 \
--l2_norm_clip=1.0 \
--epochs=60 \
--learning_rate=.15 \
# this private baseline should get ~97% acc
python -m examples.differentially_private_sgd \
--dpsgd=True \
--noise_multiplier=0.7 \
--l2_norm_clip=1.5 \
--epochs=45 \
--learning_rate=.25 \
"""
import itertools
import time
import warnings
from absl import app
from absl import flags
from jax import grad
from jax import jit
from jax import random
from jax import vmap
from jax.example_libraries import optimizers
from jax.example_libraries import stax
from jax.tree_util import tree_flatten, tree_unflatten
import jax.numpy as jnp
from examples import datasets
import numpy.random as npr
# https://github.com/google/differential-privacy
from dp_accounting import dp_event
from dp_accounting import rdp
FLAGS = flags.FLAGS
flags.DEFINE_boolean(
'dpsgd', True, 'If True, train with DP-SGD. If False, '
'train with vanilla SGD.')
flags.DEFINE_float('learning_rate', .15, 'Learning rate for training')
flags.DEFINE_float('noise_multiplier', 1.1,
'Ratio of the standard deviation to the clipping norm')
flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm')
flags.DEFINE_integer('batch_size', 256, 'Batch size')
flags.DEFINE_integer('epochs', 60, 'Number of epochs')
flags.DEFINE_integer('seed', 0, 'Seed for jax PRNG')
flags.DEFINE_integer(
'microbatches', None, 'Number of microbatches '
'(must evenly divide batch_size)')
flags.DEFINE_string('model_dir', None, 'Model directory')
init_random_params, predict = stax.serial(
stax.Conv(16, (8, 8), padding='SAME', strides=(2, 2)),
stax.Relu,
stax.MaxPool((2, 2), (1, 1)),
stax.Conv(32, (4, 4), padding='VALID', strides=(2, 2)),
stax.Relu,
stax.MaxPool((2, 2), (1, 1)),
stax.Flatten,
stax.Dense(32),
stax.Relu,
stax.Dense(10),
)
def loss(params, batch):
inputs, targets = batch
logits = predict(params, inputs)
logits = stax.logsoftmax(logits) # log normalize
return -jnp.mean(jnp.sum(logits * targets, axis=1)) # cross entropy loss
def accuracy(params, batch):
inputs, targets = batch
target_class = jnp.argmax(targets, axis=1)
predicted_class = jnp.argmax(predict(params, inputs), axis=1)
return jnp.mean(predicted_class == target_class)
def clipped_grad(params, l2_norm_clip, single_example_batch):
"""Evaluate gradient for a single-example batch and clip its grad norm."""
grads = grad(loss)(params, single_example_batch)
nonempty_grads, tree_def = tree_flatten(grads)
total_grad_norm = jnp.linalg.norm(
jnp.array([jnp.linalg.norm(neg.ravel()) for neg in nonempty_grads]))
divisor = jnp.maximum(total_grad_norm / l2_norm_clip, 1.)
normalized_nonempty_grads = [g / divisor for g in nonempty_grads]
return tree_unflatten(tree_def, normalized_nonempty_grads)
def private_grad(params, batch, rng, l2_norm_clip, noise_multiplier,
batch_size):
"""Return differentially private gradients for params, evaluated on batch."""
clipped_grads = vmap(clipped_grad, (None, None, 0))(params, l2_norm_clip, batch)
clipped_grads_flat, grads_treedef = tree_flatten(clipped_grads)
aggregated_clipped_grads = [g.sum(0) for g in clipped_grads_flat]
rngs = random.split(rng, len(aggregated_clipped_grads))
noised_aggregated_clipped_grads = [
g + l2_norm_clip * noise_multiplier * random.normal(r, g.shape)
for r, g in zip(rngs, aggregated_clipped_grads)]
normalized_noised_aggregated_clipped_grads = [
g / batch_size for g in noised_aggregated_clipped_grads]
return tree_unflatten(grads_treedef, normalized_noised_aggregated_clipped_grads)
def shape_as_image(images, labels, dummy_dim=False):
target_shape = (-1, 1, 28, 28, 1) if dummy_dim else (-1, 28, 28, 1)
return jnp.reshape(images, target_shape), labels
def compute_epsilon(steps, num_examples=60000, target_delta=1e-5):
if num_examples * target_delta > 1.:
warnings.warn('Your delta might be too high.')
q = FLAGS.batch_size / float(num_examples)
orders = list(jnp.linspace(1.1, 10.9, 99)) + list(range(11, 64))
accountant = rdp.rdp_privacy_accountant.RdpAccountant(orders)
accountant.compose(
dp_event.PoissonSampledDpEvent(
q, dp_event.GaussianDpEvent(FLAGS.noise_multiplier)), steps)
return accountant.get_epsilon(target_delta)
def main(_):
if FLAGS.microbatches:
raise NotImplementedError(
'Microbatches < batch size not currently supported'
)
train_images, train_labels, test_images, test_labels = datasets.mnist()
num_train = train_images.shape[0]
num_complete_batches, leftover = divmod(num_train, FLAGS.batch_size)
num_batches = num_complete_batches + bool(leftover)
key = random.PRNGKey(FLAGS.seed)
def data_stream():
rng = npr.RandomState(FLAGS.seed)
while True:
perm = rng.permutation(num_train)
for i in range(num_batches):
batch_idx = perm[i * FLAGS.batch_size:(i + 1) * FLAGS.batch_size]
yield train_images[batch_idx], train_labels[batch_idx]
batches = data_stream()
opt_init, opt_update, get_params = optimizers.sgd(FLAGS.learning_rate)
@jit
def update(_, i, opt_state, batch):
params = get_params(opt_state)
return opt_update(i, grad(loss)(params, batch), opt_state)
@jit
def private_update(rng, i, opt_state, batch):
params = get_params(opt_state)
rng = random.fold_in(rng, i) # get new key for new random numbers
return opt_update(
i,
private_grad(params, batch, rng, FLAGS.l2_norm_clip,
FLAGS.noise_multiplier, FLAGS.batch_size), opt_state)
_, init_params = init_random_params(key, (-1, 28, 28, 1))
opt_state = opt_init(init_params)
itercount = itertools.count()
steps_per_epoch = 60000 // FLAGS.batch_size
print('\nStarting training...')
for epoch in range(1, FLAGS.epochs + 1):
start_time = time.time()
for _ in range(num_batches):
if FLAGS.dpsgd:
opt_state = \
private_update(
key, next(itercount), opt_state,
shape_as_image(*next(batches), dummy_dim=True))
else:
opt_state = update(
key, next(itercount), opt_state, shape_as_image(*next(batches)))
epoch_time = time.time() - start_time
print(f'Epoch {epoch} in {epoch_time:0.2f} sec')
# evaluate test accuracy
params = get_params(opt_state)
test_acc = accuracy(params, shape_as_image(test_images, test_labels))
test_loss = loss(params, shape_as_image(test_images, test_labels))
print('Test set loss, accuracy (%): ({:.2f}, {:.2f})'.format(
test_loss, 100 * test_acc))
# determine privacy loss so far
if FLAGS.dpsgd:
delta = 1e-5
num_examples = 60000
eps = compute_epsilon(epoch * steps_per_epoch, num_examples, delta)
print(
f'For delta={delta:.0e}, the current epsilon is: {eps:.2f}')
else:
print('Trained with vanilla non-private SGD optimizer')
if __name__ == '__main__':
app.run(main)