-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
executable file
·266 lines (206 loc) · 7.74 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
from __future__ import division,print_function
import math, os, json, sys, re
try:
import cPickle as pickle
except:
import pickle
from glob import glob
import numpy as np
from matplotlib import pyplot as plt
from operator import itemgetter, attrgetter, methodcaller
from collections import OrderedDict
import itertools
from itertools import chain
import pandas as pd
import PIL
from PIL import Image
from numpy.random import random, permutation, randn, normal, uniform, choice
from numpy import newaxis
import scipy
from scipy import misc, ndimage
from scipy.ndimage.interpolation import zoom
from scipy.ndimage import imread
from sklearn.metrics import confusion_matrix
import bcolz
from sklearn.preprocessing import OneHotEncoder
from sklearn.manifold import TSNE
from IPython.lib.display import FileLink
import theano
from theano import shared, tensor as T
from theano.tensor.nnet import conv2d, nnet
from theano.tensor.signal import pool
import keras
from keras import backend as K
from keras.utils.data_utils import get_file
from keras.utils import np_utils
from keras.utils.np_utils import to_categorical
from keras.models import Sequential, Model
from keras.layers import Input, Embedding, Reshape, merge, LSTM, Bidirectional
from keras.layers import TimeDistributed, Activation, SimpleRNN, GRU
from keras.layers.core import Flatten, Dense, Dropout, Lambda
from keras.regularizers import l2, activity_l2, l1, activity_l1
from keras.layers.normalization import BatchNormalization
from keras.optimizers import SGD, RMSprop, Adam
from keras.utils.layer_utils import layer_from_config
from keras.metrics import categorical_crossentropy, categorical_accuracy
from keras.layers.convolutional import *
from keras.preprocessing import image, sequence
from keras.preprocessing.text import Tokenizer
from vgg16 import *
from vgg16bn import *
np.set_printoptions(precision=4, linewidth=100)
to_bw = np.array([0.299, 0.587, 0.114])
def gray(img):
if K.image_dim_ordering() == 'tf':
return np.rollaxis(img, 0, 1).dot(to_bw)
else:
return np.rollaxis(img, 0, 3).dot(to_bw)
def to_plot(img):
if K.image_dim_ordering() == 'tf':
return np.rollaxis(img, 0, 1).astype(np.uint8)
else:
return np.rollaxis(img, 0, 3).astype(np.uint8)
def plot(img):
plt.imshow(to_plot(img))
def floor(x):
return int(math.floor(x))
def ceil(x):
return int(math.ceil(x))
def plots(ims, figsize=(12,6), rows=1, interp=False, titles=None):
if type(ims[0]) is np.ndarray:
ims = np.array(ims).astype(np.uint8)
if (ims.shape[-1] != 3):
ims = ims.transpose((0,2,3,1))
f = plt.figure(figsize=figsize)
for i in range(len(ims)):
sp = f.add_subplot(rows, len(ims)//rows, i+1)
sp.axis('Off')
if titles is not None:
sp.set_title(titles[i], fontsize=16)
plt.imshow(ims[i], interpolation=None if interp else 'none')
def do_clip(arr, mx):
clipped = np.clip(arr, (1-mx)/1, mx)
return clipped/clipped.sum(axis=1)[:, np.newaxis]
def get_batches(dirname, gen=image.ImageDataGenerator(), shuffle=True, batch_size=4, class_mode='categorical',
target_size=(224,224)):
return gen.flow_from_directory(dirname, target_size=target_size,
class_mode=class_mode, shuffle=shuffle, batch_size=batch_size)
def onehot(x):
return to_categorical(x)
def wrap_config(layer):
return {'class_name': layer.__class__.__name__, 'config': layer.get_config()}
def copy_layer(layer): return layer_from_config(wrap_config(layer))
def copy_layers(layers): return [copy_layer(layer) for layer in layers]
def copy_weights(from_layers, to_layers):
for from_layer,to_layer in zip(from_layers, to_layers):
to_layer.set_weights(from_layer.get_weights())
def copy_model(m):
res = Sequential(copy_layers(m.layers))
copy_weights(m.layers, res.layers)
return res
def insert_layer(model, new_layer, index):
res = Sequential()
for i,layer in enumerate(model.layers):
if i==index: res.add(new_layer)
copied = layer_from_config(wrap_config(layer))
res.add(copied)
copied.set_weights(layer.get_weights())
return res
def adjust_dropout(weights, prev_p, new_p):
scal = (1-prev_p)/(1-new_p)
return [o*scal for o in weights]
def get_data(path, target_size=(224,224)):
batches = get_batches(path, shuffle=False, batch_size=1, class_mode=None, target_size=target_size)
return np.concatenate([batches.next() for i in range(batches.nb_sample)])
def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
(This function is copied from the scikit docs.)
"""
plt.figure()
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print(cm)
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
def save_array(fname, arr):
c=bcolz.carray(arr, rootdir=fname, mode='w')
c.flush()
def load_array(fname):
return bcolz.open(fname)[:]
def mk_size(img, r2c):
r,c,_ = img.shape
curr_r2c = r/c
new_r, new_c = r,c
if r2c>curr_r2c:
new_r = floor(c*r2c)
else:
new_c = floor(r/r2c)
arr = np.zeros((new_r, new_c, 3), dtype=np.float32)
r2=(new_r-r)//2
c2=(new_c-c)//2
arr[floor(r2):floor(r2)+r,floor(c2):floor(c2)+c] = img
return arr
def mk_square(img):
x,y,_ = img.shape
maxs = max(img.shape[:2])
y2=(maxs-y)//2
x2=(maxs-x)//2
arr = np.zeros((maxs,maxs,3), dtype=np.float32)
arr[floor(x2):floor(x2)+x,floor(y2):floor(y2)+y] = img
return arr
def vgg_ft(out_dim):
vgg = Vgg16()
vgg.ft(out_dim)
model = vgg.model
return model
def vgg_ft_bn(out_dim):
vgg = Vgg16BN()
vgg.ft(out_dim)
model = vgg.model
return model
def get_classes(path):
batches = get_batches(path+'train', shuffle=False, batch_size=1)
val_batches = get_batches(path+'valid', shuffle=False, batch_size=1)
test_batches = get_batches(path+'test', shuffle=False, batch_size=1)
return (val_batches.classes, batches.classes, onehot(val_batches.classes), onehot(batches.classes),
val_batches.filenames, batches.filenames, test_batches.filenames)
def split_at(model, layer_type):
layers = model.layers
layer_idx = [index for index,layer in enumerate(layers)
if type(layer) is layer_type][-1]
return layers[:layer_idx+1], layers[layer_idx+1:]
class MixIterator(object):
def __init__(self, iters):
self.iters = iters
self.multi = type(iters) is list
if self.multi:
self.N = sum([it[0].N for it in self.iters])
else:
self.N = sum([it.N for it in self.iters])
def reset(self):
for it in self.iters: it.reset()
def __iter__(self):
return self
def next(self, *args, **kwargs):
if self.multi:
nexts = [[next(it) for it in o] for o in self.iters]
n0 = np.concatenate([n[0] for n in nexts])
n1 = np.concatenate([n[1] for n in nexts])
return (n0, n1)
else:
nexts = [next(it) for it in self.iters]
n0 = np.concatenate([n[0] for n in nexts])
n1 = np.concatenate([n[1] for n in nexts])
return (n0, n1)