forked from openai/openai-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_legacy_response.py
103 lines (80 loc) · 2.88 KB
/
test_legacy_response.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import json
from typing import Any, Union, cast
from typing_extensions import Annotated
import httpx
import pytest
import pydantic
from openai import OpenAI, BaseModel
from openai._streaming import Stream
from openai._base_client import FinalRequestOptions
from openai._legacy_response import LegacyAPIResponse
class PydanticModel(pydantic.BaseModel): ...
def test_response_parse_mismatched_basemodel(client: OpenAI) -> None:
response = LegacyAPIResponse(
raw=httpx.Response(200, content=b"foo"),
client=client,
stream=False,
stream_cls=None,
cast_to=str,
options=FinalRequestOptions.construct(method="get", url="/foo"),
)
with pytest.raises(
TypeError,
match="Pydantic models must subclass our base model type, e.g. `from openai import BaseModel`",
):
response.parse(to=PydanticModel)
def test_response_parse_custom_stream(client: OpenAI) -> None:
response = LegacyAPIResponse(
raw=httpx.Response(200, content=b"foo"),
client=client,
stream=True,
stream_cls=None,
cast_to=str,
options=FinalRequestOptions.construct(method="get", url="/foo"),
)
stream = response.parse(to=Stream[int])
assert stream._cast_to == int
class CustomModel(BaseModel):
foo: str
bar: int
def test_response_parse_custom_model(client: OpenAI) -> None:
response = LegacyAPIResponse(
raw=httpx.Response(200, content=json.dumps({"foo": "hello!", "bar": 2})),
client=client,
stream=False,
stream_cls=None,
cast_to=str,
options=FinalRequestOptions.construct(method="get", url="/foo"),
)
obj = response.parse(to=CustomModel)
assert obj.foo == "hello!"
assert obj.bar == 2
def test_response_parse_annotated_type(client: OpenAI) -> None:
response = LegacyAPIResponse(
raw=httpx.Response(200, content=json.dumps({"foo": "hello!", "bar": 2})),
client=client,
stream=False,
stream_cls=None,
cast_to=str,
options=FinalRequestOptions.construct(method="get", url="/foo"),
)
obj = response.parse(
to=cast("type[CustomModel]", Annotated[CustomModel, "random metadata"]),
)
assert obj.foo == "hello!"
assert obj.bar == 2
class OtherModel(pydantic.BaseModel):
a: str
@pytest.mark.parametrize("client", [False], indirect=True) # loose validation
def test_response_parse_expect_model_union_non_json_content(client: OpenAI) -> None:
response = LegacyAPIResponse(
raw=httpx.Response(200, content=b"foo", headers={"Content-Type": "application/text"}),
client=client,
stream=False,
stream_cls=None,
cast_to=str,
options=FinalRequestOptions.construct(method="get", url="/foo"),
)
obj = response.parse(to=cast(Any, Union[CustomModel, OtherModel]))
assert isinstance(obj, str)
assert obj == "foo"