-
Notifications
You must be signed in to change notification settings - Fork 0
/
zhenxing.py
254 lines (120 loc) · 4.41 KB
/
zhenxing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 5 22:55:26 2019
@author: 97654
"""
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
from IPython.display import display
mpl.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['savefig.dpi'] =100#像素
plt.rcParams['figure.dpi'] = 100#分辨率
data1=pd.read_csv('zhenxing2017.csv')
data2=pd.read_csv('zhenxing2018a.csv')
data3=pd.read_csv('zhenxing2018b.csv')
data1.info
display(data1.head(2))
data4=data1.append(data2,ignore_index=True)
data=data4.append(data3,ignore_index=True)
x=list(data)
data1=data.drop([x[0],x[1]],axis=1)
data=data[[x[0],x[1],x[2],x[3],x[8],x[9],x[10],x[12],x[21],x[22],x[23],x[24],x[25],x[26],x[27],x[32]]]
data.to_csv('zhengxing.csv/xlsx')#读出csv/xlsx文件
x=list(data)
y1=data[x[1]]
y2=data[x[2]]
data=data.drop('column name', axis=1)#删除一列
data=pd.read_csv('zhenxing.csv')
data=data.drop('Unnamed: 0', axis=1)
data.rename(columns={'Unnamed: 0':'总价'},inplace = True)
x=list(data)
data[x[1]]=pd.to_datetime(data[x[1]])
data1=data[[x[1],x[14]]]
data1=data1.set_index(x[1])
data2=data1.resample('M').sum().to_period('M')
data3=data2.reset_index()
for i in range(len(data)):
if data[x[12]][i]!=data[x[15]][i]:
data[x[14]][i]=data[x[11]][i]*data[x[15]][i]
else:
continue
for i in range(len(data)):
if data[x[3]][i]!='销售订单':
data[x[14]][i]=0
else:
continue
f,ax1=plt.subplots(1,1,figsize=(20,15))
sns.barplot(x='订单日期', y='总价', palette="Blues_d",data=data3,ax=ax1)
ax1.set_title('每月有效销售额统计',fontsize=15)
ax1.set_xlabel('月份')
ax1.set_ylabel('销售额')
data=pd.read_csv('zhenxing.csv')
data=data.drop('Unnamed: 0', axis=1)
data1=data[[x[2],x[14]]]
data2=data1[x[14]].groupby(data1[x[2]]).sum()
data3=pd.DataFrame(data2)
data3=data3.reset_index()
f,ax1=plt.subplots(1,1,figsize=(20,15))
sns.barplot(x='省区', y='总价', palette="Blues_d",data=data3,ax=ax1)
plt.xticks(rotation=45)
ax1.set_title('省区有效销售额统计',fontsize=15)
ax1.set_xlabel('省区')
ax1.set_ylabel('销售额')
data=pd.read_csv('zhenxing.csv')
data=data.drop('Unnamed: 0', axis=1)
data1=data[[x[2],x[14]]]
data2=data1[x[14]].groupby(data1[x[2]]).sum()
data3=pd.DataFrame(data2)
data3=data3.reset_index()
data4=data3.sort_index(axis = 0,ascending = False,by = x[14])
data4.reset_index(drop=True, inplace=True)
mpl.rcParams['font.size']=3
f,ax1=plt.subplots(1,1,figsize=(20,15))
g=sns.barplot(x='类型', y='数量', palette="Blues_d",data=data6,ax=ax1)
plt.xticks(rotation=30)
ax1.set_title('各类型产品数量统计',fontsize=15)
ax1.set_xlabel('类型')
ax1.set_ylabel('数量')
for index,row in data6.iterrows():
g.text(row.name,row.tip,round(row.total_bill,2),color="black",ha="center")
fig = plt.figure()
plt.pie(data5[x[12]],labels=data5[x[10]],autopct='%1.2f%%')
data5=data4.copy()
data5['销售占比']=''
sum=data5[x[14]].sum()
for i in range(len(data5)):
data5['销售占比'][i]=data5[x[14]][i]/sum
f1 = lambda x :'%.4f%%' %(x*100)
data5[['销售占比']]= data5[['销售占比']].applymap(f1)
mpl.rcParams['font.size']=3
f,ax1=plt.subplots(1,1,figsize=(70,50))
sns.barplot(x='经销商编号', y='总价', palette="Blues_d",data=data4,ax=ax1)
plt.xticks(rotation=30)
ax1.set_title('各经销商的销售额统计',fontsize=15)
ax1.set_xlabel('经销商编号')
ax1.set_ylabel('销售额')
for index,row in grouped_values.iterrows():
fig = plt.figure(figsize=(70,50))
plt.pie(data4[x[14]],labels=data4[x[2]],autopct='%1.2f%%')
fig = plt.figure()
g=plt.pie(data4[x[14]],autopct='%1.2f%%')
#删除所有非销售订单的行
for i in range(len(data)):
if data[x[3]][i]!='销售订单':
data.drop([i],inplace=True)
i+=1
else:
continue
idx = np.arange(len(data4))
color = cm.jet(np.array(x)/max(x))
plt.barh(data4[x[10]], data4[x[12]])
plt.yticks(idx,data4[x[10]])
sum=0
for i in range(10,len(data4)):
sum+=data4[x[14]][i]
data4[x[14]][9]=data4[x[14]][9]+sum
for i in range(10,len(data4)):
data4.drop([i],inplace=True)