forked from shelhamer/fcn.berkeleyvision.org
-
Notifications
You must be signed in to change notification settings - Fork 1
/
voc_helper.py
45 lines (39 loc) · 1.51 KB
/
voc_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import os
import copy
import glob
import numpy as np
from PIL import Image
class voc:
def __init__(self, data_path):
# data_path is /path/to/PASCAL/VOC2011
self.dir = data_path
self.classes = ['background', 'aeroplane', 'bicycle', 'bird', 'boat',
'bottle', 'bus', 'car', 'cat', 'chair', 'cow',
'diningtable', 'dog', 'horse', 'motorbike', 'person',
'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']
# for paletting
reference_idx = '2008_000666'
palette_im = Image.open('{}/SegmentationClass/{}.png'.format(
self.dir, reference_idx))
self.palette = palette_im.palette
def load_image(self, idx):
im = Image.open('{}/JPEGImages/{}.jpg'.format(self.dir, idx))
return im
def load_label(self, idx):
"""
Load label image as 1 x height x width integer array of label indices.
The leading singleton dimension is required by the loss.
"""
label = Image.open('{}/SegmentationClass/{}.png'.format(self.dir, idx))
label = np.array(label, dtype=np.uint8)
label = label[np.newaxis, ...]
return label
def palette(self, label_im):
'''
Transfer the VOC color palette to an output mask for visualization.
'''
if label_im.ndim == 3:
label_im = label_im[0]
label = Image.fromarray(label_im, mode='P')
label.palette = copy.copy(self.palette)
return label