forked from aonotas/interpretable-adv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lm_nets.py
228 lines (185 loc) · 7.52 KB
/
lm_nets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#!/usr/bin/env python
"""Sample script of recurrent neural network language model.
This code is ported from the following implementation written in Torch.
https://github.com/tomsercu/lstm
Original code with Chainer:
https://github.com/soskek/efficient_softmax
"""
from __future__ import division
from __future__ import print_function
import argparse
import numpy as np
import chainer
# from chainer import cuda
from chainer.backends import cuda
import chainer.functions as F
import chainer.links as L
from chainer import training
from chainer.training import extensions
from chainer.functions.connection import embed_id
from adaptive_softmax import AdaptiveSoftmaxOutputLayer
def get_normalized_vector(d, xp=None):
shape = tuple(range(1, len(d.shape)))
if xp is not None:
d /= (1e-12 + xp.max(xp.abs(d), shape, keepdims=True))
d /= xp.sqrt(1e-6 + xp.sum(d ** 2, shape, keepdims=True))
else:
d_term = 1e-12 + F.max(F.absolute(d), shape, keepdims=True)
d /= F.broadcast_to(d_term, d.shape)
d_term = F.sqrt(1e-6 + F.sum(d ** 2, shape, keepdims=True))
d /= F.broadcast_to(d_term, d.shape)
return d
def embed_seq_batch(embed, seq_batch, dropout=0., norm_vecs_one=False):
batchsize = len(seq_batch)
embs = F.dropout(embed(F.concat(seq_batch, axis=0)), ratio=dropout)
if norm_vecs_one:
embs = get_normalized_vector(embs, None)
e_seq_batch = F.split_axis(embs, batchsize, axis=0)
# [(len, ), ] x batchsize
return e_seq_batch
class NormalOutputLayer(L.Linear):
def __init__(self, *args, **kwargs):
super(NormalOutputLayer, self).__init__(*args, **kwargs)
def output_and_loss(self, h, t):
logit = self(h)
return F.softmax_cross_entropy(
logit, t, normalize=False, reduce='mean')
def output(self, h, t=None):
return self(h)
class SharedOutputLayer(chainer.Chain):
def __init__(self, W, bias=True, scale=True):
super(SharedOutputLayer, self).__init__()
self.W = W
with self.init_scope():
if bias:
self.add_param('b', (W.shape[0], ), dtype='f')
self.b.data[:] = 0.
else:
self.b = None
if scale:
self.add_param('scale', (1, ), dtype='f')
self.scale.data[:] = 1.
else:
self.scale = None
def output_and_loss(self, h, t):
logit = self(h)
return F.softmax_cross_entropy(
logit, t, normalize=False, reduce='mean')
def __call__(self, x):
out = F.linear(x, self.W, self.b)
if self.scale is not None:
out *= F.broadcast_to(self.scale[None], out.shape)
return out
def output(self, h, t=None):
return self(h)
class EmbedIDNormalized(chainer.links.EmbedID):
ignore_label = -1
def __init__(self, in_size, out_size, initialW=None, ignore_label=None,
vocab_freq=None, norm_to_one=False):
super(EmbedIDNormalized, self).__init__(in_size, out_size, ignore_label=ignore_label)
self.ignore_label = ignore_label
with self.init_scope():
if initialW is None:
initialW = chainer.initializers.normal.Normal(1.0)
self.W = chainer.variable.Parameter(initialW, (in_size, out_size))
if len(vocab_freq.shape) == 1:
vocab_freq = vocab_freq[..., None]
self.vocab_freq = vocab_freq
self.normalizedW = None
self.norm_to_one = norm_to_one
def norm_by_freq(self, freq):
word_embs = self.W
mean = F.sum(freq * word_embs, axis=0, keepdims=True)
mean = F.broadcast_to(mean, word_embs.shape)
var = F.sum(freq * ((word_embs - mean) ** 2), axis=0, keepdims=True)
var = F.broadcast_to(var, word_embs.shape)
stddev = F.sqrt(1e-6 + var)
word_embs_norm = (word_embs - mean) / stddev
return word_embs_norm
def __call__(self, x):
if self.normalizedW is None:
if self.norm_to_one:
self.normalizedW = F.normalize(self.vocab_freq * self.W)
else:
self.normalizedW = self.norm_by_freq(self.vocab_freq)
return embed_id.embed_id(x, self.normalizedW, ignore_label=self.ignore_label)
# Definition of a recurrent net for language modeling
class RNNForLM(chainer.Chain):
# TODO: nstep LSTM
def __init__(self, n_vocab, n_units, n_layers=2, dropout=0.5,
share_embedding=False,
adaptive_softmax=False, vocab_freq=None, norm_to_one=False,
n_units_word=256):
super(RNNForLM, self).__init__()
with self.init_scope():
# n_units_word = 256
if vocab_freq is not None:
self.embed = EmbedIDNormalized(
n_vocab, n_units_word, vocab_freq=vocab_freq, norm_to_one=norm_to_one)
else:
self.embed = L.EmbedID(n_vocab, n_units_word)
self.rnn = L.NStepLSTM(n_layers, n_units_word, n_units, dropout)
assert(not (share_embedding))
if share_embedding:
self.output = SharedOutputLayer(self.embed.W)
elif adaptive_softmax:
self.output = AdaptiveSoftmaxOutputLayer(
n_units, n_vocab,
cutoff=[2000, 10000], reduce_k=4)
else:
self.output = NormalOutputLayer(n_units, n_vocab)
self.dropout = dropout
self.n_units = n_units
self.n_layers = n_layers
self.norm_vecs_one = False
for name, param in self.namedparams():
if param.ndim != 1:
# This initialization is applied only for weight matrices
param.data[...] = np.random.uniform(
-0.1, 0.1, param.data.shape)
self.loss = 0.
self.reset_state()
def reset_state(self):
self.h = None
self.c = None
def __call__(self, x):
raise NotImplementedError()
def call_rnn(self, e_seq_batch):
batchsize = len(e_seq_batch)
if self.h is None:
self.h = self.xp.zeros(
(self.n_layers, batchsize, self.n_units), 'f')
if self.c is None:
self.c = self.xp.zeros(
(self.n_layers, batchsize, self.n_units), 'f')
self.h, self.c, y_seq_batch = self.rnn(self.h, self.c, e_seq_batch)
return y_seq_batch
def encode_seq_batch(self, x_seq_batch):
e_seq_batch = embed_seq_batch(
self.embed, x_seq_batch, dropout=self.dropout,
norm_vecs_one=self.norm_vecs_one)
y_seq_batch = self.call_rnn(e_seq_batch)
return y_seq_batch
def forward_seq_batch(self, x_seq_batch, t_seq_batch, normalize=None):
y_seq_batch = self.encode_seq_batch(x_seq_batch)
loss = self.output_and_loss_from_seq_batch(
y_seq_batch, t_seq_batch, normalize)
return loss
def output_and_loss_from_seq_batch(self, y_seq_batch, t_seq_batch, normalize=None):
y = F.concat(y_seq_batch, axis=0)
y = F.dropout(y, ratio=self.dropout)
t = F.concat(t_seq_batch, axis=0)
loss = self.output.output_and_loss(y, t)
if normalize is not None:
loss *= 1. * t.shape[0] / normalize
else:
loss *= t.shape[0]
return loss
def output_from_seq_batch(self, y_seq_batch):
y = F.concat(y_seq_batch, axis=0)
y = F.dropout(y, ratio=self.dropout)
return self.output(y)
def pop_loss(self):
loss = self.loss
self.loss = 0.
return loss