forked from aonotas/interpretable-adv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pretrain.py
288 lines (255 loc) · 11.1 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
'''
Original code with Chainer:
https://github.com/soskek/efficient_softmax
'''
from __future__ import print_function
import argparse
import copy
import json
import os
import time
import numpy as np
import chainer
from chainer import cuda
from chainer.dataset import convert
import chainer.links as L
from chainer import serializers
import utils
import utils_pretrain
import lm_nets
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--batchsize', '-b', type=int, default=20,
help='Number of examples in each mini-batch')
parser.add_argument('--bproplen', '-l', type=int, default=35,
help='Number of words in each mini-batch '
'(= length of truncated BPTT)')
parser.add_argument('--epoch', '-e', type=int, default=50,
help='Number of sweeps over the dataset to train')
parser.add_argument('--gpu', '-g', type=int, default=-1,
help='GPU ID (negative value indicates CPU)')
parser.add_argument('--gradclip', '-c', type=float, default=5,
help='Gradient norm threshold to clip')
parser.add_argument('--out', '-o', default='result',
help='Directory to output the result')
parser.add_argument('--resume', '-r', default='',
help='Resume the training from snapshot')
parser.add_argument('--test', action='store_true',
help='Use tiny datasets for quick tests')
parser.set_defaults(test=False)
parser.add_argument('--unit', '-u', type=int, default=1024,
help='Number of LSTM units in each layer')
parser.add_argument('--n-units-word', type=int, default=256,
help='Number of LSTM units in each layer')
parser.add_argument('--layer', type=int, default=1)
parser.add_argument('--dropout', type=float, default=0.5)
parser.add_argument('--alpha', type=float, default=0.001)
parser.add_argument('--alpha_decay', type=float, default=0.9999)
parser.add_argument('--share-embedding', action='store_true')
parser.add_argument('--adaptive-softmax', action='store_true')
parser.add_argument('--dataset', default='imdb',
choices=['imdb', 'elec', 'rotten', 'dbpedia', 'rcv1'])
parser.add_argument('--vocab')
parser.add_argument('--log-interval', type=int, default=500)
parser.add_argument('--validation-interval', '--val-interval',
type=int, default=30000)
parser.add_argument('--decay-if-fail', action='store_true')
parser.add_argument('--use-full-vocab', action='store_true')
parser.add_argument('--decay-every', action='store_true')
parser.add_argument('--random-seed', type=int, default=1234, help='seed')
parser.add_argument('--save-all', type=int, default=0, help='save_all')
parser.add_argument('--norm-vecs', action='store_true')
args = parser.parse_args()
print(json.dumps(args.__dict__, indent=2))
if not os.path.isdir(args.out):
os.mkdir(args.out)
xp = cuda.cupy if args.gpu >= 0 else np
if args.gpu >= 0:
chainer.cuda.get_device_from_id(args.gpu).use()
cuda.get_device(args.gpu).use()
xp.random.seed(1234)
def evaluate(raw_model, iter):
model = raw_model.copy() # to use different state
model.reset_state() # initialize state
sum_perp = 0
count = 0
xt_batch_seq = []
one_pack = args.batchsize * args.bproplen * 2
with chainer.using_config('train', False), chainer.no_backprop_mode():
for batch in copy.copy(iter):
xt_batch_seq.append(batch)
count += 1
if len(xt_batch_seq) >= one_pack:
x_seq_batch, t_seq_batch = utils_pretrain.convert_xt_batch_seq(
xt_batch_seq, args.gpu)
loss = model.forward_seq_batch(
x_seq_batch, t_seq_batch, normalize=1.)
sum_perp += loss.data
xt_batch_seq = []
if xt_batch_seq:
x_seq_batch, t_seq_batch = utils_pretrain.convert_xt_batch_seq(
xt_batch_seq, args.gpu)
loss = model.forward_seq_batch(
x_seq_batch, t_seq_batch, normalize=1.)
sum_perp += loss.data
return np.exp(float(sum_perp) / count)
if args.vocab:
vocab = json.load(open(args.vocab))
print('vocab is loaded', args.vocab)
print('vocab =', len(vocab))
else:
vocab = None
if args.dataset == 'imdb':
import sys
sys.path.append('../')
lower = False
min_count = 1
ignore_unk = 1
vocab_obj, _, lm_data, t_vocab = utils.load_dataset_imdb(
include_pretrain=True, lower=lower, min_count=min_count,
ignore_unk=ignore_unk, add_labeld_to_unlabel=True)
if vocab is None:
vocab, vocab_count = vocab_obj
n_class = 2
(lm_train_dataset, lm_dev_dataset) = lm_data
train = lm_train_dataset[:]
val = lm_dev_dataset[:]
test = lm_dev_dataset[:]
n_vocab = len(vocab)
if args.test:
train = train[:100]
val = val[:100]
test = test[:100]
print('#train tokens =', len(train))
print('#valid tokens =', len(val))
print('#test tokens =', len(test))
print('#vocab =', n_vocab)
# Create the dataset iterators
train_iter = utils_pretrain.ParallelSequentialIterator(train, args.batchsize)
val_iter = utils_pretrain.ParallelSequentialIterator(val, 1, repeat=False)
test_iter = utils_pretrain.ParallelSequentialIterator(test, 1, repeat=False)
# Prepare an RNNLM model
model = lm_nets.RNNForLM(n_vocab, args.unit, args.layer, args.dropout,
share_embedding=args.share_embedding,
adaptive_softmax=args.adaptive_softmax,
n_units_word=args.n_units_word)
if args.norm_vecs:
print('#norm_vecs')
vocab_freq = np.array([float(vocab_count.get(w, 1)) for w, idx in
sorted(vocab.items(), key=lambda x: x[1])], dtype=np.float32)
vocab_freq = vocab_freq / np.sum(vocab_freq)
vocab_freq = vocab_freq.astype(np.float32)
vocab_freq = vocab_freq[..., None]
freq = vocab_freq
print('freq:')
print(freq)
print('#norm_vecs...')
word_embs = model.embed.W.data
print('norm(word_embs):')
print(np.linalg.norm(word_embs, axis=1).reshape(-1, 1))
mean = np.sum(freq * word_embs, axis=0)
print('mean:{}'.format(mean.shape))
var = np.sum(freq * np.power(word_embs - mean, 2.), axis=0)
stddev = np.sqrt(1e-6 + var)
print('var:{}'.format(var.shape))
print('stddev:{}'.format(stddev.shape))
word_embs_norm = (word_embs - mean) / stddev
word_embs_norm = word_embs_norm.astype(np.float32)
print('word_embs_norm:{}'.format(word_embs_norm))
print(word_embs_norm)
print('norm(word_embs_norm):')
print(np.linalg.norm(word_embs_norm, axis=1).reshape(-1, 1))
model.embed.W.data[:] = word_embs_norm
print('#done')
if args.gpu >= 0:
model.to_gpu()
# Set up an optimizer
# optimizer = chainer.optimizers.SGD(lr=1.0)
optimizer = chainer.optimizers.Adam(alpha=args.alpha)
optimizer.setup(model)
optimizer.add_hook(chainer.optimizer.GradientClipping(args.gradclip))
# optimizer.add_hook(chainer.optimizer.WeightDecay(1e-6))
sum_perp = 0
count = 0
iteration = 0
is_new_epoch = 0
best_val_perp = 1000000.
best_epoch = 0
start = time.time()
log_interval = args.log_interval
validation_interval = args.validation_interval
print('iter/epoch', len(train) // (args.bproplen * args.batchsize))
print('Training start')
while train_iter.epoch < args.epoch:
iteration += 1
xt_batch_seq = []
if np.random.rand() < 0.01:
model.reset_state()
for i in range(args.bproplen):
batch = train_iter.__next__()
xt_batch_seq.append(batch)
is_new_epoch += train_iter.is_new_epoch
count += 1
x_seq_batch, t_seq_batch = utils_pretrain.convert_xt_batch_seq(
xt_batch_seq, args.gpu)
loss = model.forward_seq_batch(
x_seq_batch, t_seq_batch, normalize=args.batchsize)
sum_perp += loss.data
model.cleargrads() # Clear the parameter gradients
loss.backward() # Backprop
loss.unchain_backward() # Truncate the graph
optimizer.update() # Update the parameters
del loss
if iteration % log_interval == 0:
time_str = time.strftime('%Y-%m-%d %H-%M-%S')
mean_speed = (count // args.bproplen) / (time.time() - start)
print('\ti {:}\tperp {:.3f}\t\t| TIME {:.3f}i/s ({})'.format(
iteration, np.exp(float(sum_perp) / count), mean_speed, time_str))
sum_perp = 0
count = 0
start = time.time()
if args.decay_every and args.alpha_decay > 0.0:
optimizer.hyperparam.alpha *= args.alpha_decay # 0.9999
if is_new_epoch:
# if iteration % validation_interval == 0:
tmp = time.time()
if args.save_all:
model_name = 'iter_{}.model'.format(train_iter.epoch)
serializers.save_npz(os.path.join(args.out, model_name), model)
val_perp = evaluate(model, val_iter)
time_str = time.strftime('%Y-%m-%d %H-%M-%S')
print('Epoch {:}: val perp {:.3f}\t\t| TIME [{:.3f}s] ({})'.format(
train_iter.epoch, val_perp, time.time() - tmp, time_str))
if val_perp < best_val_perp:
best_val_perp = val_perp
best_epoch = train_iter.epoch
serializers.save_npz(os.path.join(
args.out, 'best.model'), model)
elif args.decay_if_fail:
if hasattr(optimizer, 'alpha'):
optimizer.alpha *= 0.5
optimizer.alpha = max(optimizer.alpha, 1e-7)
else:
optimizer.lr *= 0.5
optimizer.lr = max(optimizer.lr, 1e-7)
start += (time.time() - tmp)
if not args.decay_if_fail:
if args.alpha_decay > 0.0:
optimizer.hyperparam.alpha *= args.alpha_decay # 0.9999
else:
if hasattr(optimizer, 'alpha'):
optimizer.alpha *= 0.85
else:
optimizer.lr *= 0.85
print('\t*lr = {:.8f}'.format(
optimizer.alpha if hasattr(optimizer, 'alpha') else optimizer.lr))
is_new_epoch = 0
# Evaluate on test dataset
print('test')
print('load best model at epoch {}'.format(best_epoch))
print('valid perplexity: {}'.format(best_val_perp))
serializers.load_npz(os.path.join(args.out, 'best.model'), model)
test_perp = evaluate(model, test_iter)
print('test perplexity: {}'.format(test_perp))
if __name__ == '__main__':
main()