forked from gorgonia/cu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvolution.go
275 lines (229 loc) · 10.4 KB
/
convolution.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
package cudnn
// #include <cudnn.h>
// #include "convolution.h"
import "C"
import (
"runtime"
"unsafe"
"github.com/pkg/errors"
)
type ConvolutionType byte
const (
Fwd ConvolutionType = 0
// combination of these indicate are used for bwd functions
BwdFilter = 1 << 7
BwdData = 1<<7 | 1<<6
)
// ConvolutionPreference represents the preference for the algorithm to work with.
//
// Coincidentally ALL the preferences share the same three enum numbers, so we roll them into
// one Go type.
type ConvolutionPreference byte
const (
NoWorkspace ConvolutionPreference = iota
PreferFastest
SpecifyWorkspaceLimit
)
// MakeConvolutionPreference allows the creation of a tagged preference - whether it's fwd, bwd or data or filter
func MakeConvolutionPreference(t ConvolutionType, pref ConvolutionPreference) ConvolutionPreference {
return ConvolutionPreference(byte(t) | byte(pref))
}
func (c ConvolutionPreference) IsBwd() bool { return byte(c)>>7&byte(1) == 1 }
func (c ConvolutionPreference) IsFwd() bool { return !c.IsBwd() }
func (c ConvolutionPreference) IsData() bool { return byte(c)>>6&byte(1) == 1 }
func (c ConvolutionPreference) IsFilter() bool { return !c.IsData() }
func (c ConvolutionPreference) Pref() ConvolutionPreference {
retVal := byte(c) & ^(byte(1) << 6) & ^(byte(1) << 7)
return ConvolutionPreference(retVal)
}
// C returns the C representation.
// Note this is only OK to do because all the ConvolutionPreferences share the ssame enum ints.
//
// This may break
func (c ConvolutionPreference) C() C.int { return C.int(int(c.Pref())) }
// type ConvolutionFwdPreference int
// const (
// NoWorkspace ConvolutionFwdPreference = C.CUDNN_CONVOLUTION_FWD_NO_WORKSPACE
// PreferFastest ConvolutionFwdPreference = C.CUDNN_CONVOLUTION_FWD_PREFER_FASTEST
// SpecifyWorkspaceLimit ConvolutionFwdPreference = C.CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT
// )
type ConvolutionFwdAlgo int
const (
ConvolutionFwdAlgoImplicitGemm ConvolutionFwdAlgo = C.CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM
ConvolutionFwdAlgoImplicitPrecompGemm ConvolutionFwdAlgo = C.CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM
ConvolutionFwdAlgoGemm ConvolutionFwdAlgo = C.CUDNN_CONVOLUTION_FWD_ALGO_GEMM
ConvolutionFwdAlgoDirect ConvolutionFwdAlgo = C.CUDNN_CONVOLUTION_FWD_ALGO_DIRECT
ConvolutionFwdAlgoFFT ConvolutionFwdAlgo = C.CUDNN_CONVOLUTION_FWD_ALGO_FFT
ConvolutionFwdAlgoFFTTiling ConvolutionFwdAlgo = C.CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING
ConvolutionFwdAlgoWinograd ConvolutionFwdAlgo = C.CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD
ConvolutionFwdAlgoWinogradNonfused ConvolutionFwdAlgo = C.CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED
ConvolutionFwdAlgoCount ConvolutionFwdAlgo = C.CUDNN_CONVOLUTION_FWD_ALGO_COUNT
)
func (c ConvolutionFwdAlgo) C() C.cudnnConvolutionFwdAlgo_t { return C.cudnnConvolutionFwdAlgo_t(c) }
// type ConvolutionBwdFilterPreference int
// const (
// NoWorkspace ConvolutionBwdFilterPreference = C.CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE
// PreferFastest ConvolutionBwdFilterPreference = C.CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST
// SpecifyWorkspaceLimit ConvolutionBwdFilterPreference = C.CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT
// )
type ConvolutionBwdFilterAlgo int
const (
ConvolutionBwdFilterAlgo0 ConvolutionBwdFilterAlgo = C.CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0
ConvolutionBwdFilterAlgo1 ConvolutionBwdFilterAlgo = C.CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1
ConvolutionBwdFilterAlgoFFT ConvolutionBwdFilterAlgo = C.CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT
ConvolutionBwdFilterAlgo3 ConvolutionBwdFilterAlgo = C.CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3
ConvolutionBwdFilterAlgoWinograd ConvolutionBwdFilterAlgo = C.CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD
ConvolutionBwdFilterAlgoWinogradNonfused ConvolutionBwdFilterAlgo = C.CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED
ConvolutionBwdFilterAlgoFFTTiling ConvolutionBwdFilterAlgo = C.CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING
ConvolutionBwdFilterAlgoCount ConvolutionBwdFilterAlgo = C.CUDNN_CONVOLUTION_BWD_FILTER_ALGO_COUNT
)
func (c ConvolutionBwdFilterAlgo) C() C.cudnnConvolutionBwdFilterAlgo_t {
return C.cudnnConvolutionBwdFilterAlgo_t(c)
}
// type ConvolutionBwdDataPreference int
// const (
// NoWorkspace ConvolutionBwdDataPreference = C.CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE
// PreferFastest ConvolutionBwdDataPreference = C.CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST
// SpecifyWorkspaceLimit ConvolutionBwdDataPreference = C.CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT
// )
type ConvolutionBwdDataAlgo int
const (
ConvolutionBwdDataAlgo0 ConvolutionBwdDataAlgo = C.CUDNN_CONVOLUTION_BWD_DATA_ALGO_0
ConvolutionBwdDataAlgo1 ConvolutionBwdDataAlgo = C.CUDNN_CONVOLUTION_BWD_DATA_ALGO_1
ConvolutionBwdDataAlgoFFT ConvolutionBwdDataAlgo = C.CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT
ConvolutionBwdDataAlgoFFTTiling ConvolutionBwdDataAlgo = C.CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING
ConvolutionBwdDataAlgoWinograd ConvolutionBwdDataAlgo = C.CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD
ConvolutionBwdDataAlgoWinogradNonfused ConvolutionBwdDataAlgo = C.CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED
ConvolutionBwdDataAlgoCount ConvolutionBwdDataAlgo = C.CUDNN_CONVOLUTION_BWD_DATA_ALGO_COUNT
)
func (c ConvolutionBwdDataAlgo) C() C.cudnnConvolutionBwdDataAlgo_t {
return C.cudnnConvolutionBwdDataAlgo_t(c)
}
type ConvolutionMode int
const (
StandardConvolution ConvolutionMode = C.CUDNN_CONVOLUTION
CrossCorrelation ConvolutionMode = C.CUDNN_CROSS_CORRELATION
)
// C returns the C representation of ConvolutionMode
func (e ConvolutionMode) C() C.cudnnConvolutionMode_t { return C.cudnnConvolutionMode_t(e) }
// Convolution is a struct describing the convolution operations. Internally it holds a cudnnConvolutionDescriptor_t, which will be passed around when making cgo calls.
type Convolution struct {
internal C.cudnnConvolutionDescriptor_t
mathType MathType
groupCount int
padding []int
filterStride []int
dilation []int
// cache of outputShape
dims int
inputTensor []int
inputFilter []int
outputShape []int
}
func NewConvolution(mathType MathType, groupCount int, padding, filterStride, dilation []int, convolutionMode ConvolutionMode, datatype DataType) (retVal *Convolution, err error) {
// checks
if !(len(padding) == len(filterStride) && len(filterStride) == len(dilation)) {
return nil, errors.Errorf("Unmatching inputs: padding %v, filterStride %v, dilation %v", padding, filterStride, dilation)
}
if len(padding) < 2 {
return nil, errors.Errorf("Convolution expects 4 dimensional inputs")
}
var internal C.cudnnConvolutionDescriptor_t
padA, padAManaged := ints2CIntPtr(padding)
defer returnManaged(padAManaged)
filterStrideA, filterStrideAManaged := ints2CIntPtr(filterStride)
defer returnManaged(filterStrideAManaged)
dilationA, dilationAManaged := ints2CIntPtr(dilation)
defer returnManaged(dilationAManaged)
if err = result(C.gocudnnNewConvolution(&internal, mathType.C(), C.int(groupCount), C.int(len(padding)), padA, filterStrideA, dilationA, convolutionMode.C(), datatype.C())); err != nil {
return nil, err
}
retVal = &Convolution{
internal: internal,
mathType: mathType,
groupCount: groupCount,
padding: padding,
filterStride: filterStride,
dilation: dilation,
}
runtime.SetFinalizer(retVal, destroyConvolution)
return retVal, nil
}
func (c *Convolution) MathType() MathType { return c.mathType }
func (c *Convolution) GroupCount() int { return c.groupCount }
func (c *Convolution) Padding() []int { return cloneShape(c.padding) }
func (c *Convolution) FilterStride() []int { return cloneShape(c.filterStride) }
func (c *Convolution) Dilation() []int { return cloneShape(c.dilation) }
func (c *Convolution) ForwardOutputShape(input *TensorDescriptor, filter *Filter, dims int) (retVal []int, err error) {
if c.dims == dims && shapeEq(c.inputTensor, input.shape) && shapeEq(c.inputFilter, filter.shape) {
return cloneShape(c.outputShape), nil
}
return c.CalcForwardOutputShape(input, filter, dims)
}
func (c *Convolution) CalcForwardOutputShape(input *TensorDescriptor, filter *Filter, dims int) (retVal []int, err error) {
c.inputTensor = cloneShape(input.shape)
c.inputFilter = cloneShape(filter.shape)
c.dims = dims
switch dims {
case 0, 1:
return nil, errors.Errorf("Only 2+ dims can be inferred")
case 2:
c.outputShape = make([]int, 4)
n := (*C.int)(unsafe.Pointer(&c.outputShape[0]))
c_ := (*C.int)(unsafe.Pointer(&c.outputShape[1]))
h := (*C.int)(unsafe.Pointer(&c.outputShape[2]))
w := (*C.int)(unsafe.Pointer(&c.outputShape[3]))
if err = result(C.cudnnGetConvolution2dForwardOutputDim(c.internal, input.internal, filter.internal, n, c_, h, w)); err != nil {
return nil, err
}
default:
c.outputShape = make([]int, dims)
ptr, ptrManaged := ints2CIntPtr(c.outputShape)
defer returnManaged(ptrManaged)
if err = result(C.cudnnGetConvolutionNdForwardOutputDim(c.internal, input.internal, filter.internal, C.int(dims), ptr)); err != nil {
return nil, err
}
}
return cloneShape(c.outputShape), nil
}
func destroyConvolution(obj *Convolution) { C.cudnnDestroyConvolutionDescriptor(obj.internal) }
// TODO
type ConvolutionFwdPerf struct {
internal C.cudnnConvolutionFwdAlgoPerf_t
Algo ConvolutionFwdAlgo
Time float64
Memory uintptr // size
Determinism Determinism
MathType MathType
Err error
}
func convolutionFwdPerfFromC(p C.cudnnConvolutionFwdAlgo_t) *ConvolutionFwdPerf {
retVal := &ConvolutionFwdPerf{}
return retVal
}
type ConvolutionBwdPerf struct {
internal C.cudnnConvolutionBwdFilterAlgoPerf_t
Err error
Algo ConvolutionBwdFilterAlgo
Time float64
Memory uintptr // size
Determinism Determinism
MathType MathType
}
func convolutionBwdPerfFromC(p C.cudnnConvolutionBwdFilterAlgoPerf_t) *ConvolutionBwdPerf {
retVal := &ConvolutionBwdPerf{}
return retVal
}
type ConvolutionBwdDataPerf struct {
internal C.cudnnConvolutionBwdDataAlgoPerf_t
Algo ConvolutionBwdDataAlgo
Err error
Time float64
Memory uintptr // size
Determinism Determinism
MathType MathType
}
func ConvolutionBwdDataPerfFromC(p C.cudnnConvolutionBwdDataAlgoPerf_t) *ConvolutionBwdDataPerf {
retVal := &ConvolutionBwdDataPerf{}
return retVal
}