-
Notifications
You must be signed in to change notification settings - Fork 7
/
ensemble.py
114 lines (103 loc) · 4.23 KB
/
ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import argparse
import pickle
import os
import numpy as np
from tqdm import tqdm
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--dataset',
required=True,
choices={'ntu/xsub', 'ntu/xview', 'ntu120/xsub', 'ntu120/xset', 'NW-UCLA'},
help='the work folder for storing results')
parser.add_argument('--alpha',
default=1,
help='weighted summation',
type=float)
parser.add_argument('--joint',
help='Directory containing "epoch1_test_score.pkl" for joint eval results')
parser.add_argument('--bone',
help='Directory containing "epoch1_test_score.pkl" for bone eval results')
parser.add_argument('--joint-motion', default=None)
parser.add_argument('--bone-motion', default=None)
arg = parser.parse_args()
dataset = arg.dataset
if 'UCLA' in arg.dataset:
label = []
with open('./data/' + 'NW-UCLA/' + '/val_label.pkl', 'rb') as f:
data_info = pickle.load(f)
for index in range(len(data_info)):
info = data_info[index]
label.append(int(info['label']) - 1)
elif 'ntu120' in arg.dataset:
if 'xsub' in arg.dataset:
npz_data = np.load('./data/' + 'ntu120/' + 'NTU120_CSub.npz')
label = np.where(npz_data['y_test'] > 0)[1]
elif 'xset' in arg.dataset:
npz_data = np.load('./data/' + 'ntu120/' + 'NTU120_CSet.npz')
label = np.where(npz_data['y_test'] > 0)[1]
elif 'ntu' in arg.dataset:
if 'xsub' in arg.dataset:
npz_data = np.load('./data/' + 'ntu/' + 'NTU60_CS.npz')
label = np.where(npz_data['y_test'] > 0)[1]
elif 'xview' in arg.dataset:
npz_data = np.load('./data/' + 'ntu/' + 'NTU60_CV.npz')
label = np.where(npz_data['y_test'] > 0)[1]
else:
raise NotImplementedError
with open(os.path.join(arg.joint), 'rb') as r1:
r1 = list(pickle.load(r1).items())
with open(os.path.join(arg.bone), 'rb') as r2:
r2 = list(pickle.load(r2).items())
if arg.joint_motion is not None:
with open(os.path.join(arg.joint_motion), 'rb') as r3:
r3 = list(pickle.load(r3).items())
if arg.bone_motion is not None:
with open(os.path.join(arg.bone_motion), 'rb') as r4:
r4 = list(pickle.load(r4).items())
right_num = total_num = right_num_5 = 0
if arg.joint_motion is not None and arg.bone_motion is not None:
arg.alpha = [3, 3, 2, 2]
for i in tqdm(range(len(label))):
l = label[i]
_, r11 = r1[i]
_, r22 = r2[i]
_, r33 = r3[i]
_, r44 = r4[i]
r = r11 * arg.alpha[0] + r22 * arg.alpha[1] + r33 * arg.alpha[2] + r44 * arg.alpha[3]
rank_5 = r.argsort()[-5:]
right_num_5 += int(int(l) in rank_5)
r = np.argmax(r)
right_num += int(r == int(l))
total_num += 1
acc = right_num / total_num
acc5 = right_num_5 / total_num
elif arg.joint_motion is not None and arg.bone_motion is None:
arg.alpha = [3, 3, 2]
for i in tqdm(range(len(label))):
l = label[:, i]
_, r11 = r1[i]
_, r22 = r2[i]
_, r33 = r3[i]
r = r11 * arg.alpha[0] + r22 * arg.alpha[1] + r33 * arg.alpha[2]
rank_5 = r.argsort()[-5:]
right_num_5 += int(int(l) in rank_5)
r = np.argmax(r)
right_num += int(r == int(l))
total_num += 1
acc = right_num / total_num
acc5 = right_num_5 / total_num
else:
for i in tqdm(range(len(label))):
l = label[i]
_, r11 = r1[i]
_, r22 = r2[i]
r = r11 + r22 * arg.alpha
rank_5 = r.argsort()[-5:]
right_num_5 += int(int(l) in rank_5)
r = np.argmax(r)
right_num += int(r == int(l))
total_num += 1
acc = right_num / total_num
acc5 = right_num_5 / total_num
print('Top1 Acc: {:.4f}%'.format(acc * 100))
print('Top5 Acc: {:.4f}%'.format(acc5 * 100))