forked from pytorch/torchchat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
283 lines (231 loc) · 8.44 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import time
from typing import Optional
import torch
import torch._dynamo.config
import torch._inductor.config
from build.builder import (
_initialize_model,
_initialize_tokenizer,
validate_args,
BuilderArgs,
TokenizerArgs,
)
from build.model import Transformer
from cli import add_arguments_for_eval, arg_init
from generate import encode_tokens, model_forward
from quantize import set_precision
torch._dynamo.config.automatic_dynamic_shapes = True
torch._inductor.config.triton.unique_kernel_names = True
torch._inductor.config.epilogue_fusion = False
torch._inductor.config.triton.cudagraphs = True
torch._dynamo.config.cache_size_limit = 100000
try:
import lm_eval
lm_eval_available = True
except:
lm_eval_available = False
if lm_eval_available:
try: # lm_eval version 0.4
from lm_eval.evaluator import evaluate
from lm_eval.models.huggingface import HFLM as eval_wrapper
from lm_eval.tasks import get_task_dict
except: # lm_eval version 0.3
from lm_eval import base, evaluator, tasks
eval_wrapper = base.BaseLM
get_task_dict = tasks.get_task_dict
evaluate = evaluator.evaluate
def setup_cache_padded_seq_input_pos_max_seq_length_for_prefill(
model: Transformer,
prompt: torch.Tensor,
max_new_tokens: int,
max_seq_length: Optional[int] = None,
):
"""
Sets up model cache and does some bookkeeping calculations for prompt, input_pos and max_seq_length
that are needed for prefill or model_forward
Args:
model (LLaMA): The model whose cache gets set up
prompt (torch.Tensor): Tensor of shape (T) with indices of the prompt sequence.
max_new_tokens (int): The desired maximum number of new tokens that can be generated.
max_seq_length (Optional[int], optional): The maximum sequence length allowed.
Returns:
seq (torch.Tensor): prompt but padded with zeros to size max_seq_length
input_pos (torch.Tensor): tensor of integers in increasing order
max_seq_length (int): The maximum sequence length allowed, updated based on other numbers
"""
T = prompt.size(0)
T_new = T + max_new_tokens
if max_seq_length is None:
max_seq_length = min(T_new, model.config.block_size)
device, dtype = prompt.device, prompt.dtype
# create an empty tensor of the expected final shape and fill in the current tokens
empty = torch.empty(T_new, dtype=dtype, device=device)
empty[:T] = prompt
seq = empty
input_pos = torch.arange(0, T, device=device)
with torch.device(device):
model.setup_caches(max_batch_size=1, max_seq_length=max_seq_length)
return seq, input_pos, max_seq_length
class GPTFastEvalWrapper(eval_wrapper):
"""
A wrapper class for GPTFast, providing integration with the lm-evaluation-harness library.
"""
def __init__(
self,
model: Transformer,
tokenizer,
max_seq_length: Optional[int] = None,
):
super().__init__()
self._model = model
self._tokenizer = tokenizer
self._device = torch.device("cuda")
self._max_seq_length = 2048 if max_seq_length is None else max_seq_length
@property
def eot_token_id(self):
return self._tokenizer.eos_id()
@property
def max_length(self):
return self._max_seq_length
@property
def max_gen_toks(self):
return 50
@property
def batch_size(self):
return 1
@property
def device(self):
return self._device
def tok_encode(self, string: str, **kwargs):
encoded = encode_tokens(self._tokenizer, string, bos=True, device=self._device)
# encoded is a pytorch tensor, but some internal logic in the
# eval harness expects it to be a list instead
# TODO: verify this for multi-batch as well
encoded = encoded.tolist()
return encoded
def tok_decode(self, tokens):
decoded = self._tokenizer.decode(tokens)
return decoded
def _model_call(self, inps):
# TODO: make batches work
inps = inps.squeeze(0)
max_new_tokens = 1
seq, input_pos, max_seq_length = (
setup_cache_padded_seq_input_pos_max_seq_length_for_prefill(
self._model,
inps,
max_new_tokens,
self.max_length,
)
)
x = seq.index_select(0, input_pos).view(1, -1)
logits = model_forward(self._model, x, input_pos)
return logits
def _model_generate(self, context, max_length, eos_token_id):
raise Exception("unimplemented")
@torch.no_grad()
def eval(
model: Transformer,
tokenizer,
tasks: Optional[list] = None,
limit: Optional[int] = None,
max_seq_length: Optional[int] = None,
) -> dict:
"""
Evaluates a language model on a specified task using the lm-evaluation-harness library.
Args:
model (Transformer): The pre-trained language model to evaluate.
tokenizer: The tokenizer to use for encoding/decoding text.
task (str): The name of the evaluation task to perform.
limit (Optional[int]): The maximum number of samples to evaluate (None for all available).
max_seq_length (Optional[int]): The maximum sequence length allowed for input text.
Returns:
eval_results (dict): A dictionary of evaluation results for the specified task(s).
"""
if tasks is None:
tasks = ["hellaswag"]
model_eval_wrapper = GPTFastEvalWrapper(
model,
tokenizer,
max_seq_length,
)
try:
lm_eval.tasks.initialize_tasks()
except:
pass
if "hendrycks_test" in tasks:
tasks.remove("hendrycks_test")
tasks += list(lm_eval.tasks.hendrycks_test.create_all_tasks().keys())
task_dict = get_task_dict(tasks)
eval_results = evaluate(
model_eval_wrapper,
task_dict,
limit=limit,
)
return eval_results
def main(args) -> None:
"""Evaluates model on a task from the `lm-evaluation-harness` library.
Args:
checkpoint_path (Path): The path to the model checkpoint file to load.
compile (bool): Whether or not to compile the model for optimization.
task (Optional[str]): The name of the evaluation task or a list of tasks to perform.
limit (Optional[int]): The maximum number of samples to evaluate (None for all available).
max_seq_length (Optional[int]): The maximum sequence length allowed for input text.
"""
builder_args = BuilderArgs.from_args(args)
tokenizer_args = TokenizerArgs.from_args(args)
quantize = args.quantize
device = args.device
tasks = args.tasks
limit = args.limit
max_seq_length = args.max_seq_length
print(f"Using device={device}")
set_precision(builder_args.precision)
tokenizer = _initialize_tokenizer(tokenizer_args)
builder_args.setup_caches = False
model = _initialize_model(
builder_args,
quantize,
)
validate_args(model, tokenizer_args)
if compile:
assert not (
builder_args.dso_path or builder_args.pte_path
), "cannot compile exported model"
global model_forward
model_forward = torch.compile(
model_forward, mode="reduce-overhead", dynamic=True, fullgraph=True
)
torch._inductor.config.coordinate_descent_tuning = True
t1 = time.time()
result = eval(
model,
tokenizer,
tasks,
limit,
max_seq_length,
)
print(f"Time to run eval: {time.time() - t1:.02f} seconds.")
if builder_args.dso_path:
print(f"For model {builder_args.dso_path}")
elif builder_args.pte_path:
print(f"For model {builder_args.pte_path}")
elif builder_args.checkpoint_path:
print(f"For model {builder_args.checkpoint_path}")
elif builder_args.checkpoint_dir:
print(f"For model {builder_args.checkpoint_dir}")
else:
raise RuntimeError("Well That's Fine. How did we get here")
for task, res in result["results"].items():
print(f"{task}: {res}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Export specific CLI.")
add_arguments_for_eval(parser)
args = parser.parse_args()
args = arg_init(args)
main(args)