forked from OSGeo/grass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistance.c
178 lines (146 loc) · 4.5 KB
/
distance.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
/*!
\file lib/gis/distance.c
\brief GIS Library - Distance calculation functions.
WARNING: this code is preliminary and may be changed,
including calling sequences to any of the functions
defined here.
(C) 2001-2009, 2011 by the GRASS Development Team
This program is free software under the GNU General Public License
(>=v2). Read the file COPYING that comes with GRASS for details.
\author Original author CERL
*/
#include <math.h>
#include <grass/gis.h>
#include <grass/glocale.h>
static double min4(double, double, double, double);
static double min2(double, double);
static struct state {
int projection;
double factor;
} state;
static struct state *st = &state;
/*!
\brief Begin distance calculations.
Initializes the distance calculations. It is used both for the
planimetric and latitude-longitude projections.
\return 0 if projection has no metrix (ie. imagery)
\return 1 if projection is planimetric
\return 2 if projection is latitude-longitude
*/
int G_begin_distance_calculations(void)
{
double a, e2;
st->factor = 1.0;
switch (st->projection = G_projection()) {
case PROJECTION_LL:
G_get_ellipsoid_parameters(&a, &e2);
G_begin_geodesic_distance(a, e2);
return 2;
default:
st->factor = G_database_units_to_meters_factor();
if (st->factor <= 0.0) {
st->factor = 1.0; /* assume meter grid */
return 0;
}
return 1;
}
}
/*!
\brief Returns distance in meters.
This routine computes the distance, in meters, from
<i>x1</i>,<i>y1</i> to <i>x2</i>,<i>y2</i>. If the projection is
latitude-longitude, this distance is measured along the
geodesic. Two routines perform geodesic distance calculations.
\param e1,n1 east-north coordinates of first point
\param e2,n2 east-north coordinates of second point
\return distance
*/
double G_distance(double e1, double n1, double e2, double n2)
{
if (st->projection == PROJECTION_LL)
return G_geodesic_distance(e1, n1, e2, n2);
else
return st->factor * hypot(e1 - e2, n1 - n2);
}
/*!
\brief Returns distance between two line segments in meters.
\param ax1,ay1,ax2,ay2 first segment
\param bx1,by1,bx2,by2 second segment
\return distance value
*/
double G_distance_between_line_segments(double ax1, double ay1,
double ax2, double ay2,
double bx1, double by1,
double bx2, double by2)
{
double ra, rb;
double x, y;
/* if the segments intersect, then the distance is zero */
if (G_intersect_line_segments(ax1, ay1, ax2, ay2,
bx1, by1, bx2, by2, &ra, &rb, &x, &y) > 0)
return 0.0;
return
min4(G_distance_point_to_line_segment(ax1, ay1, bx1, by1, bx2, by2),
G_distance_point_to_line_segment(ax2, ay2, bx1, by1, bx2, by2),
G_distance_point_to_line_segment(bx1, by1, ax1, ay1, ax2, ay2),
G_distance_point_to_line_segment(bx2, by2, ax1, ay1, ax2, ay2)
);
}
/*!
\brief Returns distance between a point and line segment in meters.
\param xp,yp point coordinates
\param x1,y1 segment point coordinates
\param x2,y2 segment point coordinates
\return distance
*/
double G_distance_point_to_line_segment(double xp, double yp,
double x1, double y1, double x2,
double y2)
{
double dx, dy;
double x, y;
double xq, yq, ra, rb;
int t;
/* define the perpendicular to the segment through the point */
dx = x1 - x2;
dy = y1 - y2;
if (dx == 0.0 && dy == 0.0)
return G_distance(x1, y1, xp, yp);
if (fabs(dy) > fabs(dx)) {
xq = xp + dy;
yq = (dx / dy) * (xp - xq) + yp;
}
else {
yq = yp + dx;
xq = (dy / dx) * (yp - yq) + xp;
}
/* find the intersection of the perpendicular with the segment */
t = G_intersect_line_segments(xp, yp, xq, yq, x1, y1, x2, y2, &ra,
&rb, &x, &y);
switch (t) {
case 0:
case 1:
break;
default:
/* parallel/colinear cases shouldn't occur with perpendicular lines */
G_warning(_("%s: shouldn't happen: "
"code=%d P=(%f,%f) S=(%f,%f)(%f,%f)"),
"G_distance_point_to_line_segment", t, xp, yp, x1, y1, x2, y2);
return -1.0;
}
/* if x,y lies on the segment, then the distance is from to x,y */
if (rb >= 0 && rb <= 1.0)
return G_distance(x, y, xp, yp);
/* otherwise the distance is the short of the distances to the endpoints
* of the segment
*/
return min2(G_distance(x1, y1, xp, yp), G_distance(x2, y2, xp, yp));
}
static double min4(double a, double b, double c, double d)
{
return min2(min2(a, b), min2(c, d));
}
static double min2(double a, double b)
{
return a < b ? a : b;
}