forked from borglab/gtsam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gtsampy.h
2658 lines (2212 loc) · 92.1 KB
/
gtsampy.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* GTSAM Wrap Module Definition
*
* These are the current classes available through the matlab toolbox interface,
* add more functions/classes as they are available.
*
* Requirements:
* Classes must start with an uppercase letter
* - Can wrap a typedef
* Only one Method/Constructor per line, though methods/constructors can extend across multiple lines
* Methods can return
* - Eigen types: Matrix, Vector
* - C/C++ basic types: string, bool, size_t, int, double, char, unsigned char
* - void
* - Any class with which be copied with boost::make_shared()
* - boost::shared_ptr of any object type
* Constructors
* - Overloads are supported
* - A class with no constructors can be returned from other functions but not allocated directly in MATLAB
* Methods
* - Constness has no effect
* - Specify by-value (not reference) return types, even if C++ method returns reference
* - Must start with a letter (upper or lowercase)
* - Overloads are supported
* Static methods
* - Must start with a letter (upper or lowercase) and use the "static" keyword
* - The first letter will be made uppercase in the generated MATLAB interface
* - Overloads are supported
* Arguments to functions any of
* - Eigen types: Matrix, Vector
* - Eigen types and classes as an optionally const reference
* - C/C++ basic types: string, bool, size_t, size_t, double, char, unsigned char
* - Any class with which be copied with boost::make_shared() (except Eigen)
* - boost::shared_ptr of any object type (except Eigen)
* Comments can use either C++ or C style, with multiple lines
* Namespace definitions
* - Names of namespaces must start with a lowercase letter
* - start a namespace with "namespace {"
* - end a namespace with exactly "}"
* - Namespaces can be nested
* Namespace usage
* - Namespaces can be specified for classes in arguments and return values
* - In each case, the namespace must be fully specified, e.g., "namespace1::namespace2::ClassName"
* Includes in C++ wrappers
* - All includes will be collected and added in a single file
* - All namespaces must have angle brackets: <path>
* - No default includes will be added
* Global/Namespace functions
* - Functions specified outside of a class are global
* - Can be overloaded with different arguments
* - Can have multiple functions of the same name in different namespaces
* Using classes defined in other modules
* - If you are using a class 'OtherClass' not wrapped in this definition file, add "class OtherClass;" to avoid a dependency error
* Virtual inheritance
* - Specify fully-qualified base classes, i.e. "virtual class Derived : ns::Base {" where "ns" is the namespace
* - Mark with 'virtual' keyword, e.g. "virtual class Base {", and also "virtual class Derived : ns::Base {"
* - Forward declarations must also be marked virtual, e.g. "virtual class ns::Base;" and
* also "virtual class ns::Derived;"
* - Pure virtual (abstract) classes should list no constructors in this interface file
* - Virtual classes must have a clone() function in C++ (though it does not have to be included
* in the MATLAB interface). clone() will be called whenever an object copy is needed, instead
* of using the copy constructor (which is used for non-virtual objects).
* - Signature of clone function - will be called virtually, so must appear at least at the top of the inheritance tree
* virtual boost::shared_ptr<CLASS_NAME> clone() const;
* Class Templates
* - Basic templates are supported either with an explicit list of types to instantiate,
* e.g. template<T = {gtsam::Pose2, gtsam::Rot2, gtsam::Point3}> class Class1 { ... };
* or with typedefs, e.g.
* template<T, U> class Class2 { ... };
* typedef Class2<Type1, Type2> MyInstantiatedClass;
* - In the class definition, appearances of the template argument(s) will be replaced with their
* instantiated types, e.g. 'void setValue(const T& value);'.
* - To refer to the instantiation of the template class itself, use 'This', i.e. 'static This Create();'
* - To create new instantiations in other modules, you must copy-and-paste the whole class definition
* into the new module, but use only your new instantiation types.
* - When forward-declaring template instantiations, use the generated/typedefed name, e.g.
* class gtsam::Class1Pose2;
* class gtsam::MyInstantiatedClass;
* Boost.serialization within Matlab:
* - you need to mark classes as being serializable in the markup file (see this file for an example).
* - There are two options currently, depending on the class. To "mark" a class as serializable,
* add a function with a particular signature so that wrap will catch it.
* - Add "void serialize()" to a class to create serialization functions for a class.
* Adding this flag subsumes the serializable() flag below. Requirements:
* - A default constructor must be publicly accessible
* - Must not be an abstract base class
* - The class must have an actual boost.serialization serialize() function.
* - Add "void serializable()" to a class if you only want the class to be serialized as a
* part of a container (such as noisemodel). This version does not require a publicly
* accessible default constructor.
*/
/**
* Status:
* - TODO: default values for arguments
* - WORKAROUND: make multiple versions of the same function for different configurations of default arguments
* - TODO: Handle gtsam::Rot3M conversions to quaternions
* - TODO: Parse return of const ref arguments
* - TODO: Parse std::string variants and convert directly to special string
* - TODO: Add enum support
* - TODO: Add generalized serialization support via boost.serialization with hooks to matlab save/load
*/
namespace std {
#include <vector>
template<T>
class vector
{
//Do we need these?
//Capacity
/*size_t size() const;
size_t max_size() const;
//void resize(size_t sz);
size_t capacity() const;
bool empty() const;
void reserve(size_t n);
//Element access
T* at(size_t n);
T* front();
T* back();
//Modifiers
void assign(size_t n, const T& u);
void push_back(const T& x);
void pop_back();*/
};
//typedef std::vector
#include<list>
template<T>
class list
{
};
}
namespace gtsam {
//*************************************************************************
// base
//*************************************************************************
/** gtsam namespace functions */
bool linear_independent(Matrix A, Matrix B, double tol);
virtual class Value {
// No constructors because this is an abstract class
// Testable
void print(string s) const;
// Manifold
size_t dim() const;
};
#include <gtsam/base/deprecated/LieScalar.h>
class LieScalar {
// Standard constructors
LieScalar();
LieScalar(double d);
// Standard interface
double value() const;
// Testable
void print(string s) const;
bool equals(const gtsam::LieScalar& expected, double tol) const;
// Group
static gtsam::LieScalar identity();
gtsam::LieScalar inverse() const;
gtsam::LieScalar compose(const gtsam::LieScalar& p) const;
gtsam::LieScalar between(const gtsam::LieScalar& l2) const;
// Manifold
size_t dim() const;
gtsam::LieScalar retract(Vector v) const;
Vector localCoordinates(const gtsam::LieScalar& t2) const;
// Lie group
static gtsam::LieScalar Expmap(Vector v);
static Vector Logmap(const gtsam::LieScalar& p);
};
#include <gtsam/base/deprecated/LieVector.h>
class LieVector {
// Standard constructors
LieVector();
LieVector(Vector v);
// Standard interface
Vector vector() const;
// Testable
void print(string s) const;
bool equals(const gtsam::LieVector& expected, double tol) const;
// Group
static gtsam::LieVector identity();
gtsam::LieVector inverse() const;
gtsam::LieVector compose(const gtsam::LieVector& p) const;
gtsam::LieVector between(const gtsam::LieVector& l2) const;
// Manifold
size_t dim() const;
gtsam::LieVector retract(Vector v) const;
Vector localCoordinates(const gtsam::LieVector& t2) const;
// Lie group
static gtsam::LieVector Expmap(Vector v);
static Vector Logmap(const gtsam::LieVector& p);
// enabling serialization functionality
void serialize() const;
};
#include <gtsam/base/deprecated/LieMatrix.h>
class LieMatrix {
// Standard constructors
LieMatrix();
LieMatrix(Matrix v);
// Standard interface
Matrix matrix() const;
// Testable
void print(string s) const;
bool equals(const gtsam::LieMatrix& expected, double tol) const;
// Group
static gtsam::LieMatrix identity();
gtsam::LieMatrix inverse() const;
gtsam::LieMatrix compose(const gtsam::LieMatrix& p) const;
gtsam::LieMatrix between(const gtsam::LieMatrix& l2) const;
// Manifold
size_t dim() const;
gtsam::LieMatrix retract(Vector v) const;
Vector localCoordinates(const gtsam::LieMatrix & t2) const;
// Lie group
static gtsam::LieMatrix Expmap(Vector v);
static Vector Logmap(const gtsam::LieMatrix& p);
// enabling serialization functionality
void serialize() const;
};
//*************************************************************************
// geometry
//*************************************************************************
class Point2 {
// Standard Constructors
Point2();
Point2(double x, double y);
Point2(Vector v);
// Testable
void print(string s) const;
bool equals(const gtsam::Point2& pose, double tol) const;
// Group
static gtsam::Point2 identity();
gtsam::Point2 inverse() const;
gtsam::Point2 compose(const gtsam::Point2& p2) const;
gtsam::Point2 between(const gtsam::Point2& p2) const;
// Manifold
gtsam::Point2 retract(Vector v) const;
Vector localCoordinates(const gtsam::Point2& p) const;
// Lie Group
static gtsam::Point2 Expmap(Vector v);
static Vector Logmap(const gtsam::Point2& p);
// Standard Interface
double x() const;
double y() const;
Vector vector() const;
double dist(const gtsam::Point2& p2) const;
double norm() const;
// enabling serialization functionality
void serialize() const;
};
// std::vector<gtsam::Point2>
class Point2Vector
{
// Constructors
Point2Vector();
Point2Vector(const gtsam::Point2Vector& v);
//Capacity
size_t size() const;
size_t max_size() const;
void resize(size_t sz);
size_t capacity() const;
bool empty() const;
void reserve(size_t n);
//Element access
gtsam::Point2 at(size_t n) const;
gtsam::Point2 front() const;
gtsam::Point2 back() const;
//Modifiers
void assign(size_t n, const gtsam::Point2& u);
void push_back(const gtsam::Point2& x);
void pop_back();
};
class StereoPoint2 {
// Standard Constructors
StereoPoint2();
StereoPoint2(double uL, double uR, double v);
// Testable
void print(string s) const;
bool equals(const gtsam::StereoPoint2& point, double tol) const;
// Group
static gtsam::StereoPoint2 identity();
gtsam::StereoPoint2 inverse() const;
gtsam::StereoPoint2 compose(const gtsam::StereoPoint2& p2) const;
gtsam::StereoPoint2 between(const gtsam::StereoPoint2& p2) const;
// Manifold
gtsam::StereoPoint2 retract(Vector v) const;
Vector localCoordinates(const gtsam::StereoPoint2& p) const;
// Lie Group
static gtsam::StereoPoint2 Expmap(Vector v);
static Vector Logmap(const gtsam::StereoPoint2& p);
// Standard Interface
Vector vector() const;
double uL() const;
double uR() const;
double v() const;
// enabling serialization functionality
void serialize() const;
};
class Point3 {
// Standard Constructors
Point3();
Point3(double x, double y, double z);
Point3(Vector v);
// Testable
void print(string s) const;
bool equals(const gtsam::Point3& p, double tol) const;
// Group
static gtsam::Point3 identity();
// Standard Interface
Vector vector() const;
double x() const;
double y() const;
double z() const;
// enabling serialization functionality
void serialize() const;
};
class Rot2 {
// Standard Constructors and Named Constructors
Rot2();
Rot2(double theta);
static gtsam::Rot2 fromAngle(double theta);
static gtsam::Rot2 fromDegrees(double theta);
static gtsam::Rot2 fromCosSin(double c, double s);
// Testable
void print(string s) const;
bool equals(const gtsam::Rot2& rot, double tol) const;
// Group
static gtsam::Rot2 identity();
gtsam::Rot2 inverse();
gtsam::Rot2 compose(const gtsam::Rot2& p2) const;
gtsam::Rot2 between(const gtsam::Rot2& p2) const;
// Manifold
gtsam::Rot2 retract(Vector v) const;
Vector localCoordinates(const gtsam::Rot2& p) const;
// Lie Group
static gtsam::Rot2 Expmap(Vector v);
static Vector Logmap(const gtsam::Rot2& p);
// Group Action on Point2
gtsam::Point2 rotate(const gtsam::Point2& point) const;
gtsam::Point2 unrotate(const gtsam::Point2& point) const;
// Standard Interface
static gtsam::Rot2 relativeBearing(const gtsam::Point2& d); // Ignoring derivative
static gtsam::Rot2 atan2(double y, double x);
double theta() const;
double degrees() const;
double c() const;
double s() const;
Matrix matrix() const;
// enabling serialization functionality
void serialize() const;
};
class Rot3 {
// Standard Constructors and Named Constructors
Rot3();
Rot3(Matrix R);
static gtsam::Rot3 Rx(double t);
static gtsam::Rot3 Ry(double t);
static gtsam::Rot3 Rz(double t);
static gtsam::Rot3 RzRyRx(double x, double y, double z);
static gtsam::Rot3 RzRyRx(Vector xyz);
static gtsam::Rot3 yaw(double t); // positive yaw is to right (as in aircraft heading)
static gtsam::Rot3 pitch(double t); // positive pitch is up (increasing aircraft altitude)
static gtsam::Rot3 roll(double t); // positive roll is to right (increasing yaw in aircraft)
static gtsam::Rot3 ypr(double y, double p, double r);
static gtsam::Rot3 quaternion(double w, double x, double y, double z);
static gtsam::Rot3 Rodrigues(Vector v);
// Testable
void print(string s) const;
bool equals(const gtsam::Rot3& rot, double tol) const;
// Group
static gtsam::Rot3 identity();
gtsam::Rot3 inverse() const;
gtsam::Rot3 compose(const gtsam::Rot3& p2) const;
gtsam::Rot3 between(const gtsam::Rot3& p2) const;
// Manifold
//gtsam::Rot3 retractCayley(Vector v) const; // FIXME, does not exist in both Matrix and Quaternion options
gtsam::Rot3 retract(Vector v) const;
Vector localCoordinates(const gtsam::Rot3& p) const;
// Group Action on Point3
gtsam::Point3 rotate(const gtsam::Point3& p) const;
gtsam::Point3 unrotate(const gtsam::Point3& p) const;
// Standard Interface
static gtsam::Rot3 Expmap(Vector v);
static Vector Logmap(const gtsam::Rot3& p);
Matrix matrix() const;
Matrix transpose() const;
gtsam::Point3 column(size_t index) const;
Vector xyz() const;
Vector ypr() const;
Vector rpy() const;
double roll() const;
double pitch() const;
double yaw() const;
// Vector toQuaternion() const; // FIXME: Can't cast to Vector properly
Vector quaternion() const;
// enabling serialization functionality
void serialize() const;
};
class Pose2 {
// Standard Constructor
Pose2();
Pose2(const gtsam::Pose2& pose);
Pose2(double x, double y, double theta);
Pose2(double theta, const gtsam::Point2& t);
Pose2(const gtsam::Rot2& r, const gtsam::Point2& t);
Pose2(Vector v);
// Testable
void print(string s) const;
bool equals(const gtsam::Pose2& pose, double tol) const;
// Group
static gtsam::Pose2 identity();
gtsam::Pose2 inverse() const;
gtsam::Pose2 compose(const gtsam::Pose2& p2) const;
gtsam::Pose2 between(const gtsam::Pose2& p2) const;
// Manifold
gtsam::Pose2 retract(Vector v) const;
Vector localCoordinates(const gtsam::Pose2& p) const;
// Lie Group
static gtsam::Pose2 Expmap(Vector v);
static Vector Logmap(const gtsam::Pose2& p);
Matrix AdjointMap() const;
Vector Adjoint(const Vector& xi) const;
static Matrix wedge(double vx, double vy, double w);
// Group Actions on Point2
gtsam::Point2 transformFrom(const gtsam::Point2& p) const;
gtsam::Point2 transformTo(const gtsam::Point2& p) const;
// Standard Interface
double x() const;
double y() const;
double theta() const;
gtsam::Rot2 bearing(const gtsam::Point2& point) const;
double range(const gtsam::Point2& point) const;
gtsam::Point2 translation() const;
gtsam::Rot2 rotation() const;
Matrix matrix() const;
// enabling serialization functionality
void serialize() const;
};
class Pose3 {
// Standard Constructors
Pose3();
Pose3(const gtsam::Pose3& pose);
Pose3(const gtsam::Rot3& r, const gtsam::Point3& t);
Pose3(const gtsam::Pose2& pose2); // FIXME: shadows Pose3(Pose3 pose)
Pose3(Matrix t);
// Testable
void print(string s) const;
bool equals(const gtsam::Pose3& pose, double tol) const;
// Group
static gtsam::Pose3 identity();
gtsam::Pose3 inverse() const;
gtsam::Pose3 compose(const gtsam::Pose3& p2) const;
gtsam::Pose3 between(const gtsam::Pose3& p2) const;
// Manifold
gtsam::Pose3 retract(Vector v) const;
Vector localCoordinates(const gtsam::Pose3& T2) const;
// Lie Group
static gtsam::Pose3 Expmap(Vector v);
static Vector Logmap(const gtsam::Pose3& p);
Matrix AdjointMap() const;
Vector Adjoint(Vector xi) const;
static Matrix wedge(double wx, double wy, double wz, double vx, double vy, double vz);
// Group Action on Point3
gtsam::Point3 transformFrom(const gtsam::Point3& p) const;
gtsam::Point3 transformTo(const gtsam::Point3& p) const;
// Standard Interface
gtsam::Rot3 rotation() const;
gtsam::Point3 translation() const;
double x() const;
double y() const;
double z() const;
Matrix matrix() const;
gtsam::Pose3 transformTo(const gtsam::Pose3& pose) const; // FIXME: shadows other transformTo()
double range(const gtsam::Point3& point);
double range(const gtsam::Pose3& pose);
// enabling serialization functionality
void serialize() const;
};
// std::vector<gtsam::Pose3>
class Pose3Vector
{
Pose3Vector();
size_t size() const;
bool empty() const;
gtsam::Pose3 at(size_t n) const;
void push_back(const gtsam::Pose3& x);
};
#include <gtsam/geometry/Unit3.h>
class Unit3 {
// Standard Constructors
Unit3();
Unit3(const gtsam::Point3& pose);
// Testable
void print(string s) const;
bool equals(const gtsam::Unit3& pose, double tol) const;
// Other functionality
Matrix basis() const;
Matrix skew() const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::Unit3 retract(Vector v) const;
Vector localCoordinates(const gtsam::Unit3& s) const;
};
#include <gtsam/geometry/EssentialMatrix.h>
class EssentialMatrix {
// Standard Constructors
EssentialMatrix(const gtsam::Rot3& aRb, const gtsam::Unit3& aTb);
// Testable
void print(string s) const;
bool equals(const gtsam::EssentialMatrix& pose, double tol) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::EssentialMatrix retract(Vector v) const;
Vector localCoordinates(const gtsam::EssentialMatrix& s) const;
// Other methods:
gtsam::Rot3 rotation() const;
gtsam::Unit3 direction() const;
Matrix matrix() const;
double error(Vector vA, Vector vB);
};
class Cal3_S2 {
// Standard Constructors
Cal3_S2();
Cal3_S2(double fx, double fy, double s, double u0, double v0);
Cal3_S2(Vector v);
Cal3_S2(double fov, int w, int h);
// Testable
void print(string s) const;
bool equals(const gtsam::Cal3_S2& rhs, double tol) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::Cal3_S2 retract(Vector v) const;
Vector localCoordinates(const gtsam::Cal3_S2& c) const;
// Action on Point2
gtsam::Point2 calibrate(const gtsam::Point2& p) const;
gtsam::Point2 uncalibrate(const gtsam::Point2& p) const;
// Standard Interface
double fx() const;
double fy() const;
double skew() const;
double px() const;
double py() const;
gtsam::Point2 principalPoint() const;
Vector vector() const;
Matrix matrix() const;
Matrix matrix_inverse() const;
// enabling serialization functionality
void serialize() const;
};
#include <gtsam/geometry/Cal3DS2_Base.h>
virtual class Cal3DS2_Base {
// Standard Constructors
Cal3DS2_Base();
// Testable
void print(string s) const;
// Standard Interface
double fx() const;
double fy() const;
double skew() const;
double px() const;
double py() const;
double k1() const;
double k2() const;
// Action on Point2
gtsam::Point2 uncalibrate(const gtsam::Point2& p) const;
gtsam::Point2 calibrate(const gtsam::Point2& p, double tol) const;
gtsam::Point2 calibrate(const gtsam::Point2& p) const;
// enabling serialization functionality
void serialize() const;
};
#include <gtsam/geometry/Cal3DS2.h>
virtual class Cal3DS2 : gtsam::Cal3DS2_Base {
// Standard Constructors
Cal3DS2();
Cal3DS2(double fx, double fy, double s, double u0, double v0, double k1, double k2);
Cal3DS2(double fx, double fy, double s, double u0, double v0, double k1, double k2, double p1, double p2);
Cal3DS2(Vector v);
// Testable
bool equals(const gtsam::Cal3DS2& rhs, double tol) const;
// Manifold
size_t dim() const;
static size_t Dim();
gtsam::Cal3DS2 retract(Vector v) const;
Vector localCoordinates(const gtsam::Cal3DS2& c) const;
// enabling serialization functionality
void serialize() const;
};
#include <gtsam/geometry/Cal3Unified.h>
virtual class Cal3Unified : gtsam::Cal3DS2_Base {
// Standard Constructors
Cal3Unified();
Cal3Unified(double fx, double fy, double s, double u0, double v0, double k1, double k2);
Cal3Unified(double fx, double fy, double s, double u0, double v0, double k1, double k2, double p1, double p2, double xi);
Cal3Unified(Vector v);
// Testable
bool equals(const gtsam::Cal3Unified& rhs, double tol) const;
// Standard Interface
double xi() const;
gtsam::Point2 spaceToNPlane(const gtsam::Point2& p) const;
gtsam::Point2 nPlaneToSpace(const gtsam::Point2& p) const;
// Manifold
size_t dim() const;
static size_t Dim();
gtsam::Cal3Unified retract(Vector v) const;
Vector localCoordinates(const gtsam::Cal3Unified& c) const;
// enabling serialization functionality
void serialize() const;
};
#include <gtsam/geometry/Cal3_S2Stereo.h>
class Cal3_S2Stereo {
// Standard Constructors
Cal3_S2Stereo();
Cal3_S2Stereo(double fx, double fy, double s, double u0, double v0, double b);
Cal3_S2Stereo(Vector v);
// Testable
void print(string s) const;
bool equals(const gtsam::Cal3_S2Stereo& K, double tol) const;
// Standard Interface
double fx() const;
double fy() const;
double skew() const;
double px() const;
double py() const;
gtsam::Point2 principalPoint() const;
double baseline() const;
};
#include <gtsam/geometry/Cal3Bundler.h>
class Cal3Bundler {
// Standard Constructors
Cal3Bundler();
Cal3Bundler(double fx, double k1, double k2, double u0, double v0);
// Testable
void print(string s) const;
bool equals(const gtsam::Cal3Bundler& rhs, double tol) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::Cal3Bundler retract(Vector v) const;
Vector localCoordinates(const gtsam::Cal3Bundler& c) const;
// Action on Point2
gtsam::Point2 calibrate(const gtsam::Point2& p, double tol) const;
gtsam::Point2 calibrate(const gtsam::Point2& p) const;
gtsam::Point2 uncalibrate(const gtsam::Point2& p) const;
// Standard Interface
double fx() const;
double fy() const;
double k1() const;
double k2() const;
double u0() const;
double v0() const;
Vector vector() const;
Vector k() const;
//Matrix K() const; //FIXME: Uppercase
// enabling serialization functionality
void serialize() const;
};
class CalibratedCamera {
// Standard Constructors and Named Constructors
CalibratedCamera();
CalibratedCamera(const gtsam::Pose3& pose);
CalibratedCamera(const Vector& v);
static gtsam::CalibratedCamera Level(const gtsam::Pose2& pose2, double height);
// Testable
void print(string s) const;
bool equals(const gtsam::CalibratedCamera& camera, double tol) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::CalibratedCamera retract(const Vector& d) const;
Vector localCoordinates(const gtsam::CalibratedCamera& T2) const;
// Action on Point3
gtsam::Point2 project(const gtsam::Point3& point) const;
static gtsam::Point2 Project(const gtsam::Point3& cameraPoint);
// Standard Interface
gtsam::Pose3 pose() const;
double range(const gtsam::Point3& p) const; // TODO: Other overloaded range methods
// enabling serialization functionality
void serialize() const;
};
template<CALIBRATION>
class PinholeCamera {
// Standard Constructors and Named Constructors
PinholeCamera();
PinholeCamera(const gtsam::Pose3& pose);
PinholeCamera(const gtsam::Pose3& pose, const CALIBRATION& K);
static This Level(const CALIBRATION& K, const gtsam::Pose2& pose, double height);
static This Level(const gtsam::Pose2& pose, double height);
static This Lookat(const gtsam::Point3& eye, const gtsam::Point3& target,
const gtsam::Point3& upVector, const CALIBRATION& K);
// Testable
void print(string s) const;
bool equals(const This& camera, double tol) const;
// Standard Interface
gtsam::Pose3 pose() const;
CALIBRATION calibration() const;
// Manifold
This retract(const Vector& d) const;
Vector localCoordinates(const This& T2) const;
size_t dim() const;
static size_t Dim();
// Transformations and measurement functions
static gtsam::Point2 Project(const gtsam::Point3& cameraPoint);
pair<gtsam::Point2,bool> projectSafe(const gtsam::Point3& pw) const;
gtsam::Point2 project(const gtsam::Point3& point);
gtsam::Point3 backproject(const gtsam::Point2& p, double depth) const;
double range(const gtsam::Point3& point);
double range(const gtsam::Pose3& point);
// enabling serialization functionality
void serialize() const;
};
virtual class SimpleCamera {
// Standard Constructors and Named Constructors
SimpleCamera();
SimpleCamera(const gtsam::Pose3& pose);
SimpleCamera(const gtsam::Pose3& pose, const gtsam::Cal3_S2& K);
static gtsam::SimpleCamera Level(const gtsam::Cal3_S2& K, const gtsam::Pose2& pose, double height);
static gtsam::SimpleCamera Level(const gtsam::Pose2& pose, double height);
static gtsam::SimpleCamera Lookat(const gtsam::Point3& eye, const gtsam::Point3& target,
const gtsam::Point3& upVector, const gtsam::Cal3_S2& K);
// Testable
void print(string s) const;
bool equals(const gtsam::SimpleCamera& camera, double tol) const;
// Standard Interface
gtsam::Pose3 pose() const;
gtsam::Cal3_S2 calibration() const;
// Manifold
gtsam::SimpleCamera retract(const Vector& d) const;
Vector localCoordinates(const gtsam::SimpleCamera& T2) const;
size_t dim() const;
static size_t Dim();
// Transformations and measurement functions
static gtsam::Point2 Project(const gtsam::Point3& cameraPoint);
pair<gtsam::Point2,bool> projectSafe(const gtsam::Point3& pw) const;
gtsam::Point2 project(const gtsam::Point3& point);
gtsam::Point3 backproject(const gtsam::Point2& p, double depth) const;
double range(const gtsam::Point3& point);
double range(const gtsam::Pose3& point);
// enabling serialization functionality
void serialize() const;
};
// Some typedefs for common camera types
// PinholeCameraCal3_S2 is the same as SimpleCamera above
typedef gtsam::PinholeCamera<gtsam::Cal3_S2> PinholeCameraCal3_S2;
typedef gtsam::PinholeCamera<gtsam::Cal3DS2> PinholeCameraCal3DS2;
typedef gtsam::PinholeCamera<gtsam::Cal3Unified> PinholeCameraCal3Unified;
typedef gtsam::PinholeCamera<gtsam::Cal3Bundler> PinholeCameraCal3Bundler;
class StereoCamera {
// Standard Constructors and Named Constructors
StereoCamera();
StereoCamera(const gtsam::Pose3& pose, const gtsam::Cal3_S2Stereo* K);
// Testable
void print(string s) const;
bool equals(const gtsam::StereoCamera& camera, double tol) const;
// Standard Interface
gtsam::Pose3 pose() const;
double baseline() const;
gtsam::Cal3_S2Stereo calibration() const;
// Manifold
gtsam::StereoCamera retract(const Vector& d) const;
Vector localCoordinates(const gtsam::StereoCamera& T2) const;
size_t dim() const;
static size_t Dim();
// Transformations and measurement functions
gtsam::StereoPoint2 project(const gtsam::Point3& point);
gtsam::Point3 backproject(const gtsam::StereoPoint2& p) const;
// enabling serialization functionality
void serialize() const;
};
#include <gtsam/geometry/triangulation.h>
// Templates appear not yet supported for free functions
gtsam::Point3 triangulatePoint3(const gtsam::Pose3Vector& poses,
gtsam::Cal3_S2* sharedCal, const gtsam::Point2Vector& measurements,
double rank_tol, bool optimize);
gtsam::Point3 triangulatePoint3(const gtsam::Pose3Vector& poses,
gtsam::Cal3Bundler* sharedCal, const gtsam::Point2Vector& measurements,
double rank_tol, bool optimize);
//*************************************************************************
// Symbolic
//*************************************************************************
#include <gtsam/symbolic/SymbolicFactor.h>
virtual class SymbolicFactor {
// Standard Constructors and Named Constructors
SymbolicFactor(const gtsam::SymbolicFactor& f);
SymbolicFactor();
SymbolicFactor(size_t j);
SymbolicFactor(size_t j1, size_t j2);
SymbolicFactor(size_t j1, size_t j2, size_t j3);
SymbolicFactor(size_t j1, size_t j2, size_t j3, size_t j4);
SymbolicFactor(size_t j1, size_t j2, size_t j3, size_t j4, size_t j5);
SymbolicFactor(size_t j1, size_t j2, size_t j3, size_t j4, size_t j5, size_t j6);
static gtsam::SymbolicFactor FromKeys(const gtsam::KeyVector& js);
// From Factor
size_t size() const;
void print(string s) const;
bool equals(const gtsam::SymbolicFactor& other, double tol) const;
gtsam::KeyVector keys();
};
#include <gtsam/symbolic/SymbolicFactorGraph.h>
virtual class SymbolicFactorGraph {
SymbolicFactorGraph();
SymbolicFactorGraph(const gtsam::SymbolicBayesNet& bayesNet);
SymbolicFactorGraph(const gtsam::SymbolicBayesTree& bayesTree);
// From FactorGraph
void push_back(gtsam::SymbolicFactor* factor);
void print(string s) const;
bool equals(const gtsam::SymbolicFactorGraph& rhs, double tol) const;
size_t size() const;
bool exists(size_t idx) const;
// Standard interface
gtsam::KeySet keys() const;
void push_back(gtsam::SymbolicFactor* factor);
void push_back(const gtsam::SymbolicFactorGraph& graph);
void push_back(const gtsam::SymbolicBayesNet& bayesNet);
void push_back(const gtsam::SymbolicBayesTree& bayesTree);
//Advanced Interface
void push_factor(size_t key);
void push_factor(size_t key1, size_t key2);
void push_factor(size_t key1, size_t key2, size_t key3);
void push_factor(size_t key1, size_t key2, size_t key3, size_t key4);
gtsam::SymbolicBayesNet* eliminateSequential();
gtsam::SymbolicBayesNet* eliminateSequential(const gtsam::Ordering& ordering);
gtsam::SymbolicBayesTree* eliminateMultifrontal();
gtsam::SymbolicBayesTree* eliminateMultifrontal(const gtsam::Ordering& ordering);
pair<gtsam::SymbolicBayesNet*, gtsam::SymbolicFactorGraph*> eliminatePartialSequential(
const gtsam::Ordering& ordering);
pair<gtsam::SymbolicBayesNet*, gtsam::SymbolicFactorGraph*> eliminatePartialSequential(
const gtsam::KeyVector& keys);
pair<gtsam::SymbolicBayesTree*, gtsam::SymbolicFactorGraph*> eliminatePartialMultifrontal(
const gtsam::Ordering& ordering);
pair<gtsam::SymbolicBayesTree*, gtsam::SymbolicFactorGraph*> eliminatePartialMultifrontal(
const gtsam::KeyVector& keys);
gtsam::SymbolicBayesNet* marginalMultifrontalBayesNet(const gtsam::Ordering& variables);
gtsam::SymbolicBayesNet* marginalMultifrontalBayesNet(const gtsam::KeyVector& variables);
gtsam::SymbolicBayesNet* marginalMultifrontalBayesNet(const gtsam::Ordering& variables,
const gtsam::Ordering& marginalizedVariableOrdering);
gtsam::SymbolicBayesNet* marginalMultifrontalBayesNet(const gtsam::KeyVector& variables,