-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
225 lines (141 loc) · 8.37 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# dsb
<!-- badges: start -->
<!-- badges: end -->
This package was developed at [John Tsang's Lab](https://www.niaid.nih.gov/research/john-tsang-phd) by Matt Mulè and Andrew Martins. The package implements our normalization and denoising method for CITEseq data. Technical discussion of how the method works can be found in [the biorxiv preprint](https://biorxiv.org) We utilized the dsb package to normalize CITEseq data reported in this paper [](https://)
In [the biorxiv preprint](https://biorxiv.org), comparing unstained control cells and empty droplets we found the major contribotor to background noise in CITEseq data is unbound antibody captured and sequenced in droplets. DSB corrects for this background by leveraging empty droplets which serve as a "built in" noise measurement in any droplet capture single cell platform (e.g. 10X, dropseq, indrop).
In addition we define a per-cell denoising covariate to account for the technical component of library size differences between cells which removes spurious cluster formation derived from globally dimcells clustering together.
## installation
You can install the released version of dsb in your R session with the command below
```{r}
# this is analagous to install.packages("package), you need the package devtools to install a package from a github repository like this one.
require(devtools)
#devtools::install_github(repo = 'MattPM/dsb')
```
## quickstart
```{r example}
# load package and normalize the example raw data
library(dsb)
# normalize
normalized_matrix = DSBNormalizeProtein(cell_protein_matrix = cells_citeseq_mtx,
empty_drop_matrix = empty_drop_citeseq_mtx)
```
## The full version (recommended)
By default dsb defines the per cell denoising covariate by fitting a gaussian mixture model to the log + 10 counts of each cell and defining the noise ocvariates the mean. We reccomend including the counts from isotype controls in each cell in the denoising covariates.
```{r}
# get the empty cells from demultiplexing with
# define a vector of the isotype controls in the data
isotypes = c("Mouse IgG2bkIsotype_PROT", "MouseIgG1kappaisotype_PROT","MouseIgG2akappaisotype_PROT", "RatIgG2bkIsotype_PROT")
normalized_matrix = DSBNormalizeProtein(cell_protein_matrix = cells_citeseq_mtx,
empty_drop_matrix = empty_drop_citeseq_mtx,
use.isotype.control = TRUE,
isotype.control.name.vec = isotypes)
```
# visualize distributions of CD4 and CD8
plot raw points (overplotted) and points with labeled density distributions (similar to flow)
```{r, fig.height=4.5, fig.width=8.5}
# plot this and avoid plotting by adding a density gradient like a flowjo plot
# this nice density function is from here: https://slowkow.com/notes/ggplot2-color-by-density/
get_density = function(x, y, ...) {
dens <- MASS::kde2d(x, y, ...)
ix <- findInterval(x, dens$x)
iy <- findInterval(y, dens$y)
ii <- cbind(ix, iy)
return(dens$z[ii])
}
library(ggplot2)
data.plot = normalized_matrix %>% t %>%
as.data.frame() %>%
dplyr::select(CD4_PROT, CD8_PROT)
data.plot = data.plot %>% dplyr::mutate(density = get_density(data.plot$CD4_PROT, data.plot$CD8_PROT, n = 100))
# plot with and without density gradient
p1 = ggplot(data.plot, aes(x = CD8_PROT, y = CD4_PROT, color = density)) +
geom_point(size = 0.4) +
geom_vline(xintercept = 0, color = "red", linetype = 2) +
geom_hline(yintercept = 0, color = "red", linetype = 2) +
viridis::scale_color_viridis(option = "B") +
scale_shape_identity()
p2 = ggplot(data.plot, aes(x = CD8_PROT, y = CD4_PROT)) +
geom_point(size = 0.4) +
geom_vline(xintercept = 0, color = "red", linetype = 2) +
geom_hline(yintercept = 0, color = "red", linetype = 2)
cowplot::plot_grid(p1,p2)
```
The plots above show the actual protein distributions. There is no artificial jitter added to points.
#How do I get the empty droplets?
there are a number of ways to get the empty drops. If you are using cell hashing, when you demultiplex the cells, you get a vector of empty or Negative droplets.
HTODemux function in Seurat:
https://satijalab.org/seurat/v3.1/hashing_vignette.html
deMULTIplex function from Multiseq (this is now also implemented in Seurat).
https://github.com/chris-mcginnis-ucsf/MULTI-seq
If you're not multiplexing
you can simply get a vector of negative droplets from the cells you would remove.
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1662-y
## Simple example workflow (Seurat Version 3)
```{r, eval=FALSE}
# get the ADT counts using Seurat version 3
seurat_object = HTODemux(seurat_object, assay = "HTO", positive.quantile = 0.99)
Idents(seurat_object) = "HTO_classification.global"
neg_object = subset(seurat_object, idents = "Negative")
singlet_object = subset(seurat_object, idents = "Singlet")
# non sparse CITEseq data actually store better in a regular materix so the as.matrix() call is not memory intensive.
neg_adt_matrix = GetAssayData(neg_object, assay = "CITE", slot = 'raw.data') %>% as.matrix()
positive_adt_matrix = GetAssayData(singlet_object, assay = "CITE", slot = 'raw.data') %>% as.matrix()
# normalize the data with dsb
# make sure you've run devtools::install_github(repo = 'MattPM/dsb')
normalized_matrix = DSBNormalizeProtein(cell_protein_matrix = positive_adt_matrix,
empty_drop_matrix = neg_adt_matrix)
# now add the normalized dat back to the object (the singlets defined above as "object")
singlet_object = SetAssayData(object = singlet_object, slot = "CITE", new.data = normalized_matrix)
```
In reality you might want to confirm the cells called as "Negative" have low RNA / gene content to be certain there are no contaminating cells.
Also it is not necessary but we reccomend demultiplexing with teh raw output from cellranger rather than the processed output because the raw (i.e. outs/raw_feature_bc_matrix) will have more empty droplets from which the HTODemux function will be able to estimate the negative population = it is not required but in general these functions perform better with more negative droplets. This will also have the advantage of creating more droplets to use as built protein background controls in the DSB function.
## example workflow Seurat version 2
```{r, eval=FALSE}
# get the ADT counts using Seurat version 3
seurat_object = HTODemux(seurat_object, assay = "HTO", positive.quantile = 0.99)
neg = seurat_object %>%
SetAllIdent(id = "hto_classification_global") %>%
SubsetData(ident.use = "Negative")
singlet = seurat_object %>%
SetAllIdent(id = "hto_classification_global") %>%
SubsetData(ident.use = "Singlet")
# get negative and positive ADT data
neg_adt_matrix = neg@[email protected] %>% as.matrix()
pos_adt_matrix = singlet@[email protected] %>% as.matrix()
# normalize the data with dsb
# make sure you've run devtools::install_github(repo = 'MattPM/dsb')
normalized_matrix = DSBNormalizeProtein(cell_protein_matrix = pos_adt_matrix,
empty_drop_matrix = neg_adt_matrix)
# add the assay to the Seurat object
singlet = SetAssayData(object = singlet, slot = "CITE", new.data = normalized_matrix)
```
## Get empty drops if you're not sample multiplexing
you can simply get a vector of negative droplets from the cells you would remove.
There are also more robust ways to detect empty droplets
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1662-y
here is a crude way to get some likely empty droplets assuming seurat_object is a object with most cells (i.e. any cell expressing at least a gene)
```{r, eval=FALSE}
# get the nUMI from a seurat version 3 object
umi = seurat_object$nUMI
# Get the nUMI from a Seurat version 2 objec
umi = [email protected] %>% select("nUMI")
mu_umi = mean(umi)
sd_umi = sd(umi)
# calculate a threshold for calling a cell negative
sub_threshold = mu_umi - (2*sd_umi)
Idents(seurat_object) = "nUMI"
# this negative cell object can be used to define the negative background following the examples above.
neg = subset(seurat_object, accept.high = sub_threshold)
```