forked from kpu/kenlm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprobing_hash_table_benchmark_main.cc
316 lines (282 loc) · 11.5 KB
/
probing_hash_table_benchmark_main.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
#include "file.hh"
#include "probing_hash_table.hh"
#include "mmap.hh"
#include "usage.hh"
#include "thread_pool.hh"
#include <boost/thread/mutex.hpp>
#include <boost/thread/locks.hpp>
#ifdef WIN32
#include <windows.h>
#include <processthreadsapi.h>
#else
#include <sys/resource.h>
#include <sys/time.h>
#endif
#include <iostream>
namespace util {
namespace {
struct Entry {
typedef uint64_t Key;
Key key;
Key GetKey() const { return key; }
};
// I don't care if this doesn't run on Windows. Empirically /dev/urandom was faster than boost::random's Mersenne Twister.
class URandom {
public:
URandom() :
it_(buf_ + 1024), end_(buf_ + 1024),
file_(util::OpenReadOrThrow("/dev/urandom")) {}
uint64_t Get() {
if (it_ == end_) {
it_ = buf_;
util::ReadOrThrow(file_.get(), buf_, sizeof(buf_));
it_ = buf_;
}
return *it_++;
}
void Batch(uint64_t *begin, uint64_t *end) {
util::ReadOrThrow(file_.get(), begin, (end - begin) * sizeof(uint64_t));
}
private:
uint64_t buf_[1024];
uint64_t *it_, *end_;
util::scoped_fd file_;
};
struct PrefetchEntry {
uint64_t key;
const Entry *pointer;
};
template <class TableT, unsigned PrefetchSize> class PrefetchQueue {
public:
typedef TableT Table;
explicit PrefetchQueue(Table &table) : table_(table), cur_(0), twiddle_(false) {
for (PrefetchEntry *i = entries_; i != entries_ + PrefetchSize; ++i)
i->pointer = NULL;
}
void Add(uint64_t key) {
if (Cur().pointer) {
twiddle_ ^= table_.FindFromIdeal(Cur().key, Cur().pointer);
}
Cur().key = key;
Cur().pointer = table_.Ideal(key);
__builtin_prefetch(Cur().pointer, 0, 0);
Next();
}
bool Drain() {
if (Cur().pointer) {
for (PrefetchEntry *i = &Cur(); i < entries_ + PrefetchSize; ++i) {
twiddle_ ^= table_.FindFromIdeal(i->key, i->pointer);
}
}
for (PrefetchEntry *i = entries_; i < &Cur(); ++i) {
twiddle_ ^= table_.FindFromIdeal(i->key, i->pointer);
}
return twiddle_;
}
private:
PrefetchEntry &Cur() { return entries_[cur_]; }
void Next() {
++cur_;
cur_ = cur_ % PrefetchSize;
}
Table &table_;
PrefetchEntry entries_[PrefetchSize];
std::size_t cur_;
bool twiddle_;
PrefetchQueue(const PrefetchQueue&);
void operator=(const PrefetchQueue&);
};
template <class TableT> class Immediate {
public:
typedef TableT Table;
explicit Immediate(Table &table) : table_(table), twiddle_(false) {}
void Add(uint64_t key) {
typename Table::ConstIterator it;
twiddle_ ^= table_.Find(key, it);
}
bool Drain() const { return twiddle_; }
private:
Table &table_;
bool twiddle_;
};
std::size_t Size(uint64_t entries, float multiplier = 1.5) {
typedef util::ProbingHashTable<Entry, util::IdentityHash, std::equal_to<Entry::Key>, Power2Mod> Table;
// Always round up to power of 2 for fair comparison.
return Power2Mod::RoundBuckets(Table::Size(entries, multiplier) / sizeof(Entry)) * sizeof(Entry);
}
template <class Queue> bool Test(URandom &rn, uint64_t entries, const uint64_t *const queries_begin, const uint64_t *const queries_end, bool ordinary_malloc, float multiplier = 1.5) {
std::size_t size = Size(entries, multiplier);
scoped_memory backing;
if (ordinary_malloc) {
backing.reset(util::CallocOrThrow(size), size, scoped_memory::MALLOC_ALLOCATED);
} else {
util::HugeMalloc(size, true, backing);
}
typename Queue::Table table(backing.get(), size);
double start = CPUTime();
for (uint64_t i = 0; i < entries; ++i) {
Entry entry;
entry.key = rn.Get();
table.Insert(entry);
}
double inserted = CPUTime() - start;
double before_lookup = CPUTime();
Queue queue(table);
for (const uint64_t *i = queries_begin; i != queries_end; ++i) {
queue.Add(*i);
}
bool meaningless = queue.Drain();
std::cout << ' ' << (inserted / static_cast<double>(entries)) << ' ' << (CPUTime() - before_lookup) / static_cast<double>(queries_end - queries_begin) << std::flush;
return meaningless;
}
bool TestRun(uint64_t lookups = 20000000, float multiplier = 1.5) {
URandom rn;
util::scoped_memory queries;
HugeMalloc(lookups * sizeof(uint64_t), true, queries);
rn.Batch(static_cast<uint64_t*>(queries.get()), static_cast<uint64_t*>(queries.get()) + lookups);
uint64_t physical_mem_limit = util::GuessPhysicalMemory() / 2;
bool meaningless = true;
for (uint64_t i = 4; Size(i / multiplier) < physical_mem_limit; i *= 4) {
std::cout << static_cast<std::size_t>(i / multiplier) << ' ' << Size(i / multiplier);
typedef util::ProbingHashTable<Entry, util::IdentityHash, std::equal_to<Entry::Key>, Power2Mod> Table;
typedef util::ProbingHashTable<Entry, util::IdentityHash, std::equal_to<Entry::Key>, DivMod> TableDiv;
const uint64_t *const queries_begin = static_cast<const uint64_t*>(queries.get());
meaningless ^= util::Test<Immediate<TableDiv> >(rn, i / multiplier, queries_begin, queries_begin + lookups, true, multiplier);
meaningless ^= util::Test<Immediate<Table> >(rn, i / multiplier, queries_begin, queries_begin + lookups, true, multiplier);
meaningless ^= util::Test<PrefetchQueue<Table, 4> >(rn, i / multiplier, queries_begin, queries_begin + lookups, true, multiplier);
meaningless ^= util::Test<Immediate<Table> >(rn, i / multiplier, queries_begin, queries_begin + lookups, false, multiplier);
meaningless ^= util::Test<PrefetchQueue<Table, 2> >(rn, i / multiplier, queries_begin, queries_begin + lookups, false, multiplier);
meaningless ^= util::Test<PrefetchQueue<Table, 4> >(rn, i / multiplier, queries_begin, queries_begin + lookups, false, multiplier);
meaningless ^= util::Test<PrefetchQueue<Table, 8> >(rn, i / multiplier, queries_begin, queries_begin + lookups, false, multiplier);
meaningless ^= util::Test<PrefetchQueue<Table, 16> >(rn, i / multiplier, queries_begin, queries_begin + lookups, false, multiplier);
std::cout << std::endl;
}
return meaningless;
}
template<class Table>
struct ParallelTestRequest{
ParallelTestRequest() : queries_begin_(NULL), queries_end_(NULL), table_(NULL) {}
ParallelTestRequest(const uint64_t *queries_begin, const uint64_t *queries_end, Table *table) :
queries_begin_(queries_begin),
queries_end_(queries_end),
table_(table) {}
bool operator==(const ParallelTestRequest &rhs) const {
return this->queries_begin_ == rhs.queries_begin_ && this->queries_end_ == rhs.queries_end_;
}
const uint64_t *queries_begin_;
const uint64_t *queries_end_;
Table * table_;
};
template <class TableT>
struct ParallelTestConstruct{
ParallelTestConstruct(boost::mutex& lock, const uint64_t* const burn_begin, const uint64_t* const burn_end, TableT* table) : lock_(lock), burn_begin_(burn_begin), burn_end_(burn_end), table_(table){}
boost::mutex& lock_;
const uint64_t* const burn_begin_;
const uint64_t* const burn_end_;
TableT* table_;
};
template<class Queue>
struct ParallelTestHandler{
typedef ParallelTestRequest<typename Queue::Table> Request;
explicit ParallelTestHandler(const ParallelTestConstruct<typename Queue::Table>& construct) : lock_(construct.lock_), totalTime_(0.0), nRequests_(0), nQueries_(0), error_(false), twiddle_(false){
//perform initial burn
for(const uint64_t* i = construct.burn_begin_; i < construct.burn_end_; i++){
typename Queue::Table::ConstIterator it;
twiddle_ ^= construct.table_->Find(*i, it);
}
}
void operator()(Request request){
if (error_) return;
Queue queue(*request.table_);
double start = ThreadTime();
if(start < 0.0){
error_ = true;
return;
}
for(const uint64_t *i = request.queries_begin_; i != request.queries_end_; ++i){
queue.Add(*i);
}
twiddle_ ^= queue.Drain();
double end = ThreadTime();
if(end < 0.0){
error_ = true;
return;
}
totalTime_ += end - start;
nQueries_ += request.queries_end_ - request.queries_begin_;
++nRequests_;
}
virtual ~ParallelTestHandler() {
boost::unique_lock<boost::mutex> produce_lock(lock_);
if (error_){
std::cout << "Error ";
}
else {
std::cout << nRequests_ << ' ' << ' ' << nQueries_ << ' ' << totalTime_ << std::endl;
}
std::cerr << "Meaningless " << twiddle_ << std::endl;
}
private:
boost::mutex &lock_;
double totalTime_;
std::size_t nRequests_;
std::size_t nQueries_;
bool error_;
bool twiddle_;
};
template<class Queue>
void ParallelTest(typename Queue::Table* table, const uint64_t *const queries_begin,
const uint64_t *const queries_end, std::size_t num_threads,
std::size_t tasks_per_thread, std::size_t burn){
boost::mutex lock;
ParallelTestConstruct<typename Queue::Table> construct(lock, queries_begin, queries_begin + burn, table);
ParallelTestRequest<typename Queue::Table> poison(NULL, NULL, NULL);
{
util::ThreadPool<ParallelTestHandler<Queue> > pool(num_threads, num_threads, construct, poison);
const uint64_t queries_per_thread =(static_cast<uint64_t>(queries_end-queries_begin-burn)/num_threads)/tasks_per_thread;
for (const uint64_t *i = queries_begin+burn; i + queries_per_thread <= queries_end; i += queries_per_thread){
ParallelTestRequest<typename Queue::Table> request(i, i+queries_per_thread, table);
pool.Produce(request);
}
} // pool gets deallocated and all jobs finish
std::cout << std::endl;
}
void ParallelTestRun(std::size_t tasks_per_thread = 1, std::size_t burn = 4000, uint64_t lookups = 20000000, float multiplier = 1.5) {
URandom rn;
util::scoped_memory queries;
HugeMalloc((lookups + burn)* sizeof(uint64_t), true, queries);
rn.Batch(static_cast<uint64_t*>(queries.get()), static_cast<uint64_t*>(queries.get()) + lookups + burn);
const uint64_t *const queries_begin = static_cast<const uint64_t*>(queries.get());
const uint64_t *const queries_end = queries_begin + lookups + burn;
typedef util::ProbingHashTable<Entry, util::IdentityHash, std::equal_to<Entry::Key>, Power2Mod> Table;
uint64_t physical_mem_limit = util::GuessPhysicalMemory() / 2;
for (uint64_t i = 4; Size(i / multiplier, multiplier) < physical_mem_limit; i *= 4) {
std::size_t entries = static_cast<std::size_t>(i / multiplier);
std::size_t size = Size(i/multiplier, multiplier);
scoped_memory backing;
util::HugeMalloc(size, true, backing);
Table table(backing.get(), size);
for (uint64_t j = 0; j < entries; ++j) {
Entry entry;
entry.key = rn.Get();
table.Insert(entry);
}
for(std::size_t num_threads = 1; num_threads <= 16; num_threads*=2){
std::cout << entries << ' ' << size << ' ' << num_threads << ' ' << std::endl;
util::ParallelTest<Immediate<Table> >(&table, queries_begin, queries_end, num_threads, tasks_per_thread, burn);
util::ParallelTest<PrefetchQueue<Table, 2> >(&table, queries_begin, queries_end, num_threads, tasks_per_thread, burn);
util::ParallelTest<PrefetchQueue<Table, 4> >(&table, queries_begin, queries_end, num_threads, tasks_per_thread, burn);
util::ParallelTest<PrefetchQueue<Table, 8> >(&table, queries_begin, queries_end, num_threads, tasks_per_thread, burn);
util::ParallelTest<PrefetchQueue<Table, 16> >(&table, queries_begin, queries_end, num_threads, tasks_per_thread, burn);
}
}
}
} // namespace
} // namespace util
int main() {
//bool meaningless = false;
std::cout << "#CPU time\n";
//meaningless ^= util::TestRun();
util::ParallelTestRun(10, 4000);
//std::cerr << "Meaningless: " << meaningless << '\n';
}