Aimed at tackling the knowledge-intensive NLP tasks (think tasks a human wouldn't be expected to solve without access to external knowledge sources), RAG models are seq2seq models with access to a retrieval mechanism providing relevant context documents at training and evaluation time.
A RAG model encapsulates two core components: a question encoder and a generator. During a forward pass, we encode the input with the question encoder and pass it to the retriever to extract relevant context documents. The documents are then prepended to the input. Such contextualized inputs are passed to the generator.
Read more about RAG at https://arxiv.org/abs/2005.11401.
Our finetuning logic is based on scripts from examples/seq2seq
. We accept training data in the same format as specified there - we expect a directory consisting of 6 text files:
train.source
train.target
val.source
val.target
test.source
test.target
A sample finetuning command (run ./examples/rag/finetune.py --help
to list all available options):
python examples/rag/finetune.py \
--data_dir $DATA_DIR \
--output_dir $OUTPUT_DIR \
--model_name_or_path $MODEL_NAME_OR_PATH \
--model_type rag_sequence \
--fp16 \
--gpus 8
We publish two base
models which can serve as a starting point for finetuning on downstream tasks (use them as model_name_or_path
):
facebook/rag-sequence-base
- a base for finetuningRagSequenceForGeneration
models,facebook/rag-token-base
- a base for finetuningRagTokenForGeneration
models.
The base
models initialize the question encoder with facebook/dpr-question_encoder-single-nq-base
and the generator with facebook/bart-large
.
If you would like to initialize finetuning with a base model using different question encoder and generator architectures, you can build it with a consolidation script, e.g.:
python examples/rag/consolidate_rag_checkpoint.py \
--model_type rag_sequence \
--generator_name_or_path facebook/bart-large-cnn \
--question_encoder_name_or_path facebook/dpr-question_encoder-single-nq-base \
--dest path/to/checkpoint
You will then be able to pass path/to/checkpoint
as model_name_or_path
to the finetune.py
script.
Our evaluation script enables two modes of evaluation (controlled by the eval_mode
argument): e2e
- end2end evaluation, returns EM (exact match) and F1 scores calculated for the downstream task and retrieval
- which returns precision@k of the documents retrieved for provided inputs.
The evaluation script expects paths to two files:
evaluation_set
- a path to a file specifying the evaluation dataset, a single input per line.gold_data_path
- a path to a file contaning ground truth answers for datapoints from theevaluation_set
, a single output per line. Check below for expected formats of the gold data files.
For retrieval
evaluation, we expect a gold data file where each line will consist of a tab-separated list of document titles constituting positive contexts for respective datapoints from the evaluation_set
. E.g. given a question who sings does he love me with reba
in the evaluation_set
, a respective ground truth line could look as follows:
Does He Love You Does He Love You Red Sandy Spika dress of Reba McEntire Greatest Hits Volume Two (Reba McEntire album) Shoot for the Moon (album)
We demonstrate how to evaluate retrieval against DPR evaluation data. You can download respective files from links listed here.
-
Download and unzip the gold data file. We use the
biencoder-nq-dev
from https://dl.fbaipublicfiles.com/dpr/data/retriever/biencoder-nq-dev.json.gz.wget https://dl.fbaipublicfiles.com/dpr/data/retriever/biencoder-nq-dev.json.gz && gzip -d biencoder-nq-dev.json.gz
-
Parse the unziped file using the
parse_dpr_relevance_data.py
mkdir output # or wherever you want to save this python examples/rag/parse_dpr_relevance_data.py \ --src_path biencoder-nq-dev.json \ --evaluation_set output/biencoder-nq-dev.questions \ --gold_data_path output/biencoder-nq-dev.pages
-
Run evaluation:
python examples/rag/eval_rag.py \ --model_name_or_path facebook/rag-sequence-nq \ --model_type rag_sequence \ --evaluation_set output/biencoder-nq-dev.questions \ --gold_data_path output/biencoder-nq-dev.pages \ --predictions_path output/retrieval_preds.tsv \ --eval_mode retrieval \ --k 1
# EXPLANATION python examples/rag/eval_rag.py \ --model_name_or_path facebook/rag-sequence-nq \ # model name or path of the model we're evaluating --model_type rag_sequence \ # RAG model type (rag_token or rag_sequence) --evaluation_set output/biencoder-nq-dev.questions \ # an input dataset for evaluation --gold_data_path poutput/biencoder-nq-dev.pages \ # a dataset containing ground truth answers for samples from the evaluation_set --predictions_path output/retrieval_preds.tsv \ # name of file where predictions will be stored --eval_mode retrieval \ # indicates whether we're performing retrieval evaluation or e2e evaluation --k 1 # parameter k for the precision@k metric
We support two formats of the gold data file (controlled by the gold_data_mode
parameter):
qa
- where a single line has the following format:input [tab] output_list
, e.g.:
who is the owner of reading football club ['Xiu Li Dai', 'Dai Yongge', 'Dai Xiuli', 'Yongge Dai']
ans
- where a single line contains a single expected answer, e.g.:
Xiu Li Dai
Predictions of the model for the samples from the evaluation_set
will be saved under the path specified by the predictions_path
parameter.
If this path already exists, the script will use saved predictions to calculate metrics.
Add --recalculate
parameter to force the script to perform inference from scratch.
An example e2e evaluation run could look as follows:
python examples/rag/eval_rag.py \
--model_name_or_path facebook/rag-sequence-nq \
--model_type rag_sequence \
--evaluation_set path/to/test.source \
--gold_data_path path/to/gold_data \
--predictions_path path/to/e2e_preds.txt \
--eval_mode e2e \
--gold_data_mode qa \
--n_docs 5 \ # You can experiment with retrieving different number of documents at evaluation time
--print_predictions \
--recalculate \ # adding this parameter will force recalculating predictions even if predictions_path already exists