This is a SQL execution engine to process data with sql for embedded use, includes a native go lexer, parser. Extend with native go functions.
- execution of sql queries against your data, embedable, not coupled to storage layer
- extend VM with custom go functions, provide rich basic library of functions
- provide example backends (csv, elasticsearch, etc)
See example in qlcsv folder for a CSV reader, parser, evaluation engine.
./qlcsv -sql 'select
user_id, email, item_count * 2, yy(reg_date) > 10
FROM stdio where email_is_valid(email);' < users.csv
func main() {
// load the libray of pre-built functions for usage in sql queries
builtins.LoadAllBuiltins()
// Add a custom function to the VM to make available to SQL language
// showing lexer/parser accepts it
expr.FuncAdd("email_is_valid", EmailIsValid)
// Datasources are easy to write and can be added
datasource.Register("csv", &datasource.CsvDataSource{})
// now from here down is standard go database/sql query handling
db, err := sql.Open("qlbridge", "csv:///dev/stdin")
if err != nil {
panic(err.Error())
}
defer db.Close()
rows, err := db.Query(sqlText)
if err != nil {
panic(err.Error())
}
defer rows.Close()
cols, _ := rows.Columns()
// this is just stupid hijinx for getting pointers for unknown len columns
readCols := make([]interface{}, len(cols))
writeCols := make([]string, len(cols))
for i, _ := range writeCols {
readCols[i] = &writeCols[i]
}
for rows.Next() {
rows.Scan(readCols...)
fmt.Println(strings.Join(writeCols, ", "))
}
}
// Example of a custom Function, that we are adding into the Expression VM
//
// select
// user_id AS theuserid, email, item_count * 2, reg_date
// FROM stdio
// WHERE email_is_valid(email)
func EmailIsValid(ctx vm.EvalContext, email value.Value) (value.BoolValue, bool) {
emailstr, ok := value.ToString(email.Rv())
if !ok || emailstr == "" {
return value.BoolValueFalse, true
}
if _, err := mail.ParseAddress(emailstr); err == nil {
return value.BoolValueTrue, true
}
return value.BoolValueFalse, true
}
[x]QL languages are making a comeback. It is still an easy, approachable way of working with data. Also, we see more and more ql's that are xql'ish but un-apologetically non-standard. This matches our observation that data is stored in more and more formats in more tools, services that aren't traditional db's but querying that data should still be easy. Examples Influx, GitQL, Presto, Hive, CQL, yql, ql.io, etc