forked from WuLC/MachineLearningAlgorithm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStacking.py
163 lines (138 loc) · 5.98 KB
/
Stacking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# -*- coding: utf-8 -*-
# Created on Sun Jan 21 2018 18:53:27
# Author: WuLC
# EMail: [email protected]
#####################################################
# This script offers a framework for stacking, a ensemble method in machine learning
# More details can be found in the passage: http://bit.ly/2FeEdOz
#####################################################
import numpy as np
from sklearn.model_selection import KFold
# load train data and test data as ndarray
# a m×n ndarray means that there are m samples, while each sample has n dimension feature
x_train_file = './data/selectedFeatures/X_train_select.npy'
y_train_file = './data/selectedFeatures/label.npy'
x_test_file = './data/selectedFeatures/X_test_select.npy'
x_train = np.load(x_train_file).astype(np.float)
y_train = np.load(y_train_file).astype(np.float)
x_test = np.load(x_test_file).astype(np.float)
print(x_train.shape, y_train.shape, x_test.shape)
class BasicModel(object):
"""Parent class of basic models"""
def train(self, x_train, y_train, x_val, y_val):
"""return a trained model and eval metric o validation data"""
pass
def predict(self, model, x_test):
"""return the predicted result"""
pass
def get_oof(self, x_train, y_train, x_test, n_folds = 5):
"""K-fold stacking"""
num_train, num_test = x_train.shape[0], x_test.shape[0]
oof_train = np.zeros((num_train,))
oof_test = np.zeros((num_test,))
oof_test_all_fold = np.zeros((num_test, n_folds))
aucs = []
KF = KFold(n_splits = n_folds, random_state=2017)
for i, (train_index, val_index) in enumerate(KF.split(x_train)):
print('{0} fold, train {1}, val {2}'.format(i, len(train_index), len(val_index)))
x_tra, y_tra = x_train[train_index], y_train[train_index]
x_val, y_val = x_train[val_index], y_train[val_index]
model, auc = self.train(x_tra, y_tra, x_val, y_val)
aucs.append(auc)
oof_train[val_index] = self.predict(model, x_val)
oof_test_all_fold[:, i] = self.predict(model, x_test)
oof_test = np.mean(oof_test_all_fold, axis=1)
print('all aucs {0}, average {1}'.format(aucs, np.mean(aucs)))
return oof_train, oof_test
# create two models for first-layer stacking: xgb and lgb
import xgboost as xgb
class XGBClassifier(BasicModel):
def __init__(self):
"""set parameters"""
self.num_rounds=1000
self.early_stopping_rounds = 15
self.params = {
'objective': 'binary:logistic',
'eta': 0.1,
'max_depth': 8,
'eval_metric': 'auc',
'seed': 0,
'silent' : 0
}
def train(self, x_train, y_train, x_val, y_val):
print('train with xgb model')
xgbtrain = xgb.DMatrix(x_train, y_train)
xgbval = xgb.DMatrix(x_val, y_val)
watchlist = [(xgbtrain,'train'), (xgbval, 'val')]
model = xgb.train(self.params,
xgbtrain,
self.num_rounds)
watchlist,
early_stopping_rounds = self.early_stopping_rounds)
return model, float(model.eval(xgbval).split()[1].split(':')[1])
def predict(self, model, x_test):
print('test with xgb model')
xgbtest = xgb.DMatrix(x_test)
return model.predict(xgbtest)
import lightgbm as lgb
class LGBClassifier(BasicModel):
def __init__(self):
self.num_boost_round = 2000
self.early_stopping_rounds = 15
self.params = {
'task': 'train',
'boosting_type': 'dart',
'objective': 'binary',
'metric': {'auc', 'binary_logloss'},
'num_leaves': 80,
'learning_rate': 0.05,
# 'scale_pos_weight': 1.5,
'feature_fraction': 0.5,
'bagging_fraction': 1,
'bagging_freq': 5,
'max_bin': 300,
'is_unbalance': True,
'lambda_l2': 5.0,
'verbose' : -1
}
def train(self, x_train, y_train, x_val, y_val):
print('train with lgb model')
lgbtrain = lgb.Dataset(x_train, y_train)
lgbval = lgb.Dataset(x_val, y_val)
model = lgb.train(self.params,
lgbtrain,
valid_sets = lgbval,
verbose_eval = self.num_boost_round,
num_boost_round = self.num_boost_round)
early_stopping_rounds = self.early_stopping_rounds)
return model, model.best_score['valid_0']['auc']
def predict(self, model, x_test):
print('test with lgb model')
return model.predict(x_test, num_iteration=model.best_iteration)
# get output of first layer models and construct as input for the second layer
lgb_classifier = LGBClassifier()
lgb_oof_train, lgb_oof_test = lgb_classifier.get_oof(x_train, y_train, x_test)
print(lgb_oof_train.shape, lgb_oof_test.shape)
xgb_classifier = XGBClassifier()
xgb_oof_train, xgb_oof_test = xgb_classifier.get_oof(x_train, y_train, x_test)
print(xgb_oof_train.shape, xgb_oof_test.shape)
input_train = [xgb_oof_train, lgb_oof_train]
input_test = [xgb_oof_test, lgb_oof_test]
stacked_train = np.concatenate([f.reshape(-1, 1) for f in input_train], axis=1)
stacked_test = np.concatenate([f.reshape(-1, 1) for f in input_test], axis=1)
print(stacked_train.shape, stacked_test.shape)
# use LR as the model of the second layer
from sklearn.linear_model import LinearRegression
from sklearn import metrics
# split for validation
n = int(stacked_train.shape[0] * 0.8)
x_tra, y_tra = stacked_train[:n], y_train[:n]
x_val, y_val = stacked_train[n:], y_train[n:]
model = LinearRegression()
model.fit(x_tra,y_tra)
y_pred = model.predict(x_val)
print(metrics.roc_auc_score(y_val, y_pred))
# predict on test data
final_model = LinearRegression()
final_model.fit(stacked_train, y_train)
test_prediction = final_model.predict(stacked_test)