Prometheus metrics and Grafana dashboards for all of your favorite Elixir libraries
- Installation
- Design Philosophy
- Available Plugins
- Grafana Dashboards
- Setting Up Metrics
- Performance Concerns
- Attribution
Available in Hex, the package can be installed by adding prom_ex
to your list of
dependencies in mix.exs
:
def deps do
[
{:prom_ex, "~> 1.0.0"}
]
end
Documentation can be found at https://hexdocs.pm/prom_ex.
With the widespread adoption of the Telemetry library and the other libraries in the BEAM Telemetry GitHub Org, we have reached a point in the Elixir ecosystem where we have a consistent means of surfacing application and library metrics. This allows us to have a great level of insight into our applications and dependencies given that they all leverage the same fundamental tooling. The goal of this project is to provide a "Plug-in" style library where you can easily add new plug-ins to surface metrics so that Prometheus can scrape them. Ideally, this project acts as the "Metrics" pillar in your application (in reference to The Three Pillars of Observability).
To this end, while PromEx does provide a certain level of configurability (like the polling rate, starting behaviour for manual metrics and all the options that the plugins receive), the goal is not to make an infinitely configurable tool. For example, you are not able to edit the names/descriptions of Prometheus metrics via plugin options or even the tags that are attached to the data points.
Instead, if there things that you don't agree with or that are incompatible with your usage of a certain 1st party plugin and want to edit how the PromEx plugins react to Telemetry events, it is recommended that you fork the plugin in question and edit it to your specific use case. If you think that the community can benefit for your changes, do not hesitate to make a PR and I'll be sure to review it. This is not to say that event configurability will never come to PromEx, but I want to make sure that the public facing API is clean and straightforward and not bogged down with too much configuration. In addition, the Grafana dashboards would then have to have a lot of templatized logic to accommodate all this configurability (something which has been a pain-point in the Helm community for example).
PromEx provides the following utilities to you in order to achieve your observability goals:
- The
PromEx.Plug
module that can be used in your Phoenix or Plug application to expose the collected metrics - A standalone HTTP metrics server if Phoenix is not a dependency in your project
- A Mix task to upload the provided complimentary Grafana dashboards
- A Mix task to create a PromEx metrics capture module
- A behaviour that defines the contract for PromEx plug-ins
- A behaviour that defines the functionality of a PromEx metrics capture module
- Grafana dashboards tailored to each specific Plugin so that metrics work out of the box with dashboards
- Grafana API support to create/upload to dashboard folders and to create graph annotations to mark events in Grafana
- EEx Grafana dashboard templates so you can dynamically tweak dashboards prior to uploading
Plugin | Status | Description |
---|---|---|
PromEx.Plugins.Application |
Beta | Collect metrics on your application dependencies |
PromEx.Plugins.Beam |
Beta | Collect metrics regarding the BEAM virtual machine |
PromEx.Plugins.Phoenix |
Beta | Collect request metrics emitted by Phoenix |
PromEx.Plugins.Ecto |
Beta | Collect query metrics emitted by Ecto |
PromEx.Plugins.Oban |
Beta | Collect queue processing metrics emitted by Oban |
PromEx.Plugins.PhoenixLiveView |
Beta | Collect metrics emitted by Phoenix LiveView |
PromEx.Plugins.Broadway |
Coming soon | Collect message processing metrics emitted by Broadway |
PromEx.Plugins.Absinthe |
Coming soon | Collect GraphQL metrics emitted by Absinthe |
PromEx.Plugins.Finch |
Coming soon | Collect HTTP request metrics emitted by Finch |
PromEx.Plugins.Redix |
Coming soon | Collect Redis request metrics emitted by Redix |
More to come... |
Each PromEx plugin comes with a custom tailored Grafana Dashboard. Click here to check out sample screenshots of each Plugin specific Grafana Dashbaord.
The goal of PromEx is to have metrics set up be as simple and streamlined as possible. In that spirit, all that you need to do to start leveraging PromEx along with the built-in plugins is to run the following mix task:
$ mix prom_ex.gen.config --datasource YOUR_PROMETHEUS_DATASOURCE_ID
Then add the generated module to your application.ex
file supervision tree (be sure to add it to the top of the
supervisor children list so that you do not miss any init-style events from other processes like Ecto.Repo for
example):
defmodule MyCoolApp.Application do
use Application
def start(_type, _args) do
children = [
MyCoolApp.PromEx,
...
]
opts = [strategy: :one_for_one, name: MyCoolApp.Supervisor]
Supervisor.start_link(children, opts)
end
end
With that in place, all that you need to do is then add the PromEx plug somewhere in your
endpoint.ex
file (I would suggest putting it before your plug Plug.Telemetry
call so that
you do not pollute your logs with calls to /metrics
):
defmodule MyCoolAppWeb.Endpoint do
use Phoenix.Endpoint, otp_app: :my_cool_app
...
plug PromEx.Plug, prom_ex_module: MyCoolApp.PromEx
# Or plug PromEx.plug, path: "/some/other/metrics/path", prom_ex_module: MyCoolApp.PromEx
...
plug Plug.RequestId
plug Plug.Telemetry, event_prefix: [:phoenix, :endpoint]
...
plug MyCoolAppWeb.Router
end
With that in place, all you need to do is start your server and you should be able to hit your metrics endpoint and see your application metrics:
$ curl localhost:4000/metrics
# HELP my_cool_app_application_dependency_info Information regarding the application's dependencies.
# TYPE my_cool_app_application_dependency_info gauge
my_cool_app_application_dependency_info{modules="69",name="hex",version="0.20.5"} 1
my_cool_app_application_dependency_info{modules="1",name="connection",version="1.0.4"} 1
my_cool_app_application_dependency_info{modules="4",name="telemetry_poller",version="0.5.1"} 1
...
Be sure to check out the module docs for each plugin that you choose to use to ensure that you are familiar with all of the options that they provide.
You may think to yourself that with all these metrics being collected and scraped, that the performance of your
application may be negatively impacted. Luckily PromEx is built upon the solid foundation established by the Telemetry
,
TelemetryMetrics
, and the TelemetryMetricsPrometheus
projects. These libraries were designed to be as lightweight
and performant as possible. From some basic stress tests that I have run, I have been unable to observe any meaningful
performance reduction (thank you OTP and particularly ETS ;)). Below are the results from a recent stress test using
ApacheBench:
$ ./benchmarks/ab-graph.sh -u http://localhost:4000 -n 1000 -c 50 -k
Server Software: Cowboy
Server Hostname: localhost
Server Port: 4000
Document Path: /
Document Length: 3389 bytes
Concurrency Level: 50
Time taken for tests: 4.144 seconds
Complete requests: 1000
Failed requests: 0
Keep-Alive requests: 1000
Total transferred: 4060000 bytes
HTML transferred: 3389000 bytes
Requests per second: 241.32 [#/sec] (mean)
Time per request: 207.191 [ms] (mean)
Time per request: 4.144 [ms] (mean, across all concurrent requests)
Transfer rate: 956.81 [Kbytes/sec] received
Connection Times (ms)
min mean[+/-sd] median max
Connect: 0 0 0.2 0 1
Processing: 39 202 24.3 203 264
Waiting: 38 202 24.3 203 264
Total: 39 202 24.2 203 264
Percentage of the requests served within a certain time (ms)
50% 203
66% 210
75% 215
80% 218
90% 227
95% 237
98% 246
99% 255
100% 264 (longest request)
$ ./benchmarks/ab-graph.sh -u http://localhost:4000 -n 1000 -c 50 -k
Server Software: Cowboy
Server Hostname: localhost
Server Port: 4000
Document Path: /
Document Length: 3389 bytes
Concurrency Level: 50
Time taken for tests: 4.156 seconds
Complete requests: 1000
Failed requests: 0
Keep-Alive requests: 1000
Total transferred: 4060000 bytes
HTML transferred: 3389000 bytes
Requests per second: 240.59 [#/sec] (mean)
Time per request: 207.822 [ms] (mean)
Time per request: 4.156 [ms] (mean, across all concurrent requests)
Transfer rate: 953.90 [Kbytes/sec] received
Connection Times (ms)
min mean[+/-sd] median max
Connect: 0 0 0.1 0 1
Processing: 38 202 23.1 205 267
Waiting: 37 202 23.1 205 267
Total: 38 202 23.0 205 267
Percentage of the requests served within a certain time (ms)
50% 205
66% 211
75% 215
80% 219
90% 226
95% 232
98% 238
99% 246
100% 267 (longest request)
In the spirit of visualizing performance characteristics, the percentile data from the ApacheBench stress tests has been overlaid and plotted using Gnuplot (thanks to apachebench-graphs for making Gnuplot-ing a lot more streamlined :)). As we can see, the distributions track each other more or less 1:1 except for the slowest 5-10% of requests where we see a slight performance hit. In other words, 90% of the time there was no measurable performance overhead in the instrumented application.
It wouldn't be right to not include somewhere in this project a "thank you" to the various projects and people that helped make this possible:
- The various projects available in BEAM Telemetry
- All of the Prometheus libraries that Ilya Khaprov (@deadtrickster) maintains
- The logo for the project is an edited version of an SVG image from the unDraw project
- Juan Luis Baptiste for the nifty ApacheBench+Gnuplot shell scripts apachebench-graphs