forked from apache/arrow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dplyr-summarize.R
500 lines (462 loc) · 16.8 KB
/
dplyr-summarize.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# Aggregation functions
# These all return a list of:
# @param fun string function name
# @param data Expression (these are all currently a single field)
# @param options list of function options, as passed to call_function
# For group-by aggregation, `hash_` gets prepended to the function name.
# So to see a list of available hash aggregation functions,
# you can use list_compute_functions("^hash_")
ensure_one_arg <- function(args, fun) {
if (length(args) == 0) {
arrow_not_supported(paste0(fun, "() with 0 arguments"))
} else if (length(args) > 1) {
arrow_not_supported(paste0("Multiple arguments to ", fun, "()"))
}
args[[1]]
}
agg_fun_output_type <- function(fun, input_type, hash) {
# These are quick and dirty heuristics.
if (fun %in% c("any", "all")) {
bool()
} else if (fun %in% "sum") {
# It may upcast to a bigger type but this is close enough
input_type
} else if (fun %in% c("mean", "stddev", "variance", "approximate_median")) {
float64()
} else if (fun %in% "tdigest") {
if (hash) {
fixed_size_list_of(float64(), 1L)
} else {
float64()
}
} else {
# Just so things don't error, assume the resulting type is the same
input_type
}
}
register_bindings_aggregate <- function() {
register_binding_agg("base::sum", function(..., na.rm = FALSE) {
list(
fun = "sum",
data = ensure_one_arg(list2(...), "sum"),
options = list(skip_nulls = na.rm, min_count = 0L)
)
})
register_binding_agg("base::any", function(..., na.rm = FALSE) {
list(
fun = "any",
data = ensure_one_arg(list2(...), "any"),
options = list(skip_nulls = na.rm, min_count = 0L)
)
})
register_binding_agg("base::all", function(..., na.rm = FALSE) {
list(
fun = "all",
data = ensure_one_arg(list2(...), "all"),
options = list(skip_nulls = na.rm, min_count = 0L)
)
})
register_binding_agg("base::mean", function(x, na.rm = FALSE) {
list(
fun = "mean",
data = x,
options = list(skip_nulls = na.rm, min_count = 0L)
)
})
register_binding_agg("stats::sd", function(x, na.rm = FALSE, ddof = 1) {
list(
fun = "stddev",
data = x,
options = list(skip_nulls = na.rm, min_count = 0L, ddof = ddof)
)
})
register_binding_agg("stats::var", function(x, na.rm = FALSE, ddof = 1) {
list(
fun = "variance",
data = x,
options = list(skip_nulls = na.rm, min_count = 0L, ddof = ddof)
)
})
register_binding_agg(
"stats::quantile",
function(x, probs, na.rm = FALSE) {
if (length(probs) != 1) {
arrow_not_supported("quantile() with length(probs) != 1")
}
# TODO: Bind to the Arrow function that returns an exact quantile and remove
# this warning (ARROW-14021)
warn(
"quantile() currently returns an approximate quantile in Arrow",
.frequency = "once",
.frequency_id = "arrow.quantile.approximate",
class = "arrow.quantile.approximate"
)
list(
fun = "tdigest",
data = x,
options = list(skip_nulls = na.rm, q = probs)
)
},
notes = c(
"`probs` must be length 1;",
"approximate quantile (t-digest) is computed"
)
)
register_binding_agg(
"stats::median",
function(x, na.rm = FALSE) {
# TODO: Bind to the Arrow function that returns an exact median and remove
# this warning (ARROW-14021)
warn(
"median() currently returns an approximate median in Arrow",
.frequency = "once",
.frequency_id = "arrow.median.approximate",
class = "arrow.median.approximate"
)
list(
fun = "approximate_median",
data = x,
options = list(skip_nulls = na.rm)
)
},
notes = "approximate median (t-digest) is computed"
)
register_binding_agg("dplyr::n_distinct", function(..., na.rm = FALSE) {
list(
fun = "count_distinct",
data = ensure_one_arg(list2(...), "n_distinct"),
options = list(na.rm = na.rm)
)
})
register_binding_agg("dplyr::n", function() {
list(
fun = "sum",
data = Expression$scalar(1L),
options = list()
)
})
register_binding_agg("base::min", function(..., na.rm = FALSE) {
list(
fun = "min",
data = ensure_one_arg(list2(...), "min"),
options = list(skip_nulls = na.rm, min_count = 0L)
)
})
register_binding_agg("base::max", function(..., na.rm = FALSE) {
list(
fun = "max",
data = ensure_one_arg(list2(...), "max"),
options = list(skip_nulls = na.rm, min_count = 0L)
)
})
}
# we register 2 versions of the "::" binding - one for use with agg_funcs
# (registered below) and another one for use with nse_funcs
# (registered in dplyr-funcs.R)
agg_funcs[["::"]] <- function(lhs, rhs) {
lhs_name <- as.character(substitute(lhs))
rhs_name <- as.character(substitute(rhs))
fun_name <- paste0(lhs_name, "::", rhs_name)
# if we do not have a binding for pkg::fun, then fall back on to the
# nse_funcs (useful when we have a regular function inside an aggregating one)
# and then, if searching nse_funcs fails too, fall back to the
# regular `pkg::fun()` function
agg_funcs[[fun_name]] %||% nse_funcs[[fun_name]] %||% asNamespace(lhs_name)[[rhs_name]]
}
# The following S3 methods are registered on load if dplyr is present
summarise.arrow_dplyr_query <- function(.data, ..., .groups = NULL) {
call <- match.call()
.data <- as_adq(.data)
exprs <- expand_across(.data, quos(...))
# Only retain the columns we need to do our aggregations
vars_to_keep <- unique(c(
unlist(lapply(exprs, all.vars)), # vars referenced in summarise
dplyr::group_vars(.data) # vars needed for grouping
))
# If exprs rely on the results of previous exprs
# (total = sum(x), mean = total / n())
# then not all vars will correspond to columns in the data,
# so don't try to select() them (use intersect() to exclude them)
# Note that this select() isn't useful for the Arrow summarize implementation
# because it will effectively project to keep what it needs anyway,
# but the data.frame fallback version does benefit from select here
.data <- dplyr::select(.data, intersect(vars_to_keep, names(.data)))
# Try stuff, if successful return()
out <- try(do_arrow_summarize(.data, !!!exprs, .groups = .groups), silent = TRUE)
if (inherits(out, "try-error")) {
return(abandon_ship(call, .data, format(out)))
} else {
return(out)
}
}
summarise.Dataset <- summarise.ArrowTabular <- summarise.RecordBatchReader <- summarise.arrow_dplyr_query
# This is the Arrow summarize implementation
do_arrow_summarize <- function(.data, ..., .groups = NULL) {
exprs <- ensure_named_exprs(quos(...))
# Create a stateful environment for recording our evaluated expressions
# It's more complex than other places because a single summarize() expr
# may result in multiple query nodes (Aggregate, Project),
# and we have to walk through the expressions to disentangle them.
ctx <- env(
mask = arrow_mask(.data, aggregation = TRUE),
aggregations = empty_named_list(),
post_mutate = empty_named_list()
)
for (i in seq_along(exprs)) {
# Iterate over the indices and not the names because names may be repeated
# (which overwrites the previous name)
summarize_eval(
names(exprs)[i],
exprs[[i]],
ctx,
length(.data$group_by_vars) > 0
)
}
# Apply the results to the .data object.
# First, the aggregations
.data$aggregations <- ctx$aggregations
# Then collapse the query so that the resulting query object can have
# additional operations applied to it
out <- collapse.arrow_dplyr_query(.data)
# The expressions may have been translated into
# "first, aggregate, then transform the result further"
# nolint start
# For example,
# summarize(mean = sum(x) / n())
# is effectively implemented as
# summarize(..temp0 = sum(x), ..temp1 = n()) %>%
# mutate(mean = ..temp0 / ..temp1) %>%
# select(-starts_with("..temp"))
# If this is the case, there will be expressions in post_mutate
# nolint end
if (length(ctx$post_mutate)) {
# Append post_mutate, and make sure order is correct
# according to input exprs (also dropping ..temp columns)
out$selected_columns <- c(
out$selected_columns,
ctx$post_mutate
)[c(.data$group_by_vars, names(exprs))]
}
# If the object has .drop = FALSE and any group vars are dictionaries,
# we can't (currently) preserve the empty rows that dplyr does,
# so give a warning about that.
if (!dplyr::group_by_drop_default(.data)) {
group_by_exprs <- .data$selected_columns[.data$group_by_vars]
if (any(map_lgl(group_by_exprs, ~ inherits(.$type(), "DictionaryType")))) {
warning(
".drop = FALSE currently not supported in Arrow aggregation",
call. = FALSE
)
}
}
# Handle .groups argument
if (length(.data$group_by_vars)) {
if (is.null(.groups)) {
# dplyr docs say:
# When ‘.groups’ is not specified, it is chosen based on the
# number of rows of the results:
# • If all the results have 1 row, you get "drop_last".
# • If the number of rows varies, you get "keep".
#
# But we don't support anything that returns multiple rows now
.groups <- "drop_last"
} else {
assert_that(is.string(.groups))
}
if (.groups == "drop_last") {
out$group_by_vars <- head(.data$group_by_vars, -1)
} else if (.groups == "keep") {
out$group_by_vars <- .data$group_by_vars
} else if (.groups == "rowwise") {
stop(arrow_not_supported('.groups = "rowwise"'))
} else if (.groups == "drop") {
# collapse() preserves groups so remove them
out <- dplyr::ungroup(out)
} else {
stop(paste("Invalid .groups argument:", .groups))
}
out$drop_empty_groups <- .data$drop_empty_groups
}
out
}
arrow_eval_or_stop <- function(expr, mask) {
# TODO: change arrow_eval error handling behavior?
out <- arrow_eval(expr, mask)
if (inherits(out, "try-error")) {
msg <- handle_arrow_not_supported(out, format_expr(expr))
stop(msg, call. = FALSE)
}
out
}
summarize_projection <- function(.data) {
c(
map(.data$aggregations, ~ .$data),
.data$selected_columns[.data$group_by_vars]
)
}
format_aggregation <- function(x) {
paste0(x$fun, "(", x$data$ToString(), ")")
}
# This function handles each summarize expression and turns it into the
# appropriate combination of (1) aggregations (possibly temporary) and
# (2) post-aggregation transformations (mutate)
# The function returns nothing: it assigns into the `ctx` environment
summarize_eval <- function(name, quosure, ctx, hash) {
expr <- quo_get_expr(quosure)
ctx$quo_env <- quo_get_env(quosure)
funs_in_expr <- all_funs(expr)
if (length(funs_in_expr) == 0) {
# This branch only gets called at the top level, where expr is something
# that is not a function call (could be a quosure, a symbol, or atomic
# value). This needs to evaluate to a scalar or something that can be
# converted to one.
value <- arrow_eval_or_stop(quosure, ctx$mask)
if (!inherits(value, "Expression")) {
value <- Expression$scalar(value)
}
# We can't support a bare field reference because this is not
# an aggregate expression
if (!identical(value$field_name, "")) {
abort(
paste(
"Expression", format_expr(quosure),
"is not an aggregate expression or is not supported in Arrow"
)
)
}
# Scalars need to be added to post_mutate because they don't need
# to be sent to the query engine as an aggregation
ctx$post_mutate[[name]] <- value
return()
}
# For the quantile() binding in the hash aggregation case, we need to mutate
# the list output from the Arrow hash_tdigest kernel to flatten it into a
# column of type float64. We do that by modifying the unevaluated expression
# to replace quantile(...) with arrow_list_element(quantile(...), 0L)
if (hash && any(c("quantile", "stats::quantile") %in% funs_in_expr)) {
expr <- wrap_hash_quantile(expr)
funs_in_expr <- all_funs(expr)
}
# Start inspecting the expr to see what aggregations it involves
agg_funs <- names(agg_funcs)
outer_agg <- funs_in_expr[1] %in% agg_funs
inner_agg <- funs_in_expr[-1] %in% agg_funs
# First, pull out any aggregations wrapped in other function calls
if (any(inner_agg)) {
expr <- extract_aggregations(expr, ctx)
}
# By this point, there are no more aggregation functions in expr
# except for possibly the outer function call:
# they've all been pulled out to ctx$aggregations, and in their place in expr
# there are variable names, which will correspond to field refs in the
# query object after aggregation and collapse().
# So if we want to know if there are any aggregations inside expr,
# we have to look for them by their new var names
inner_agg_exprs <- all_vars(expr) %in% names(ctx$aggregations)
if (outer_agg) {
# This is something like agg(fun(x, y)
# It just works by normal arrow_eval, unless there's a mix of aggs and
# columns in the original data like agg(fun(x, agg(x)))
# (but that will have been caught in extract_aggregations())
ctx$aggregations[[name]] <- arrow_eval_or_stop(
as_quosure(expr, ctx$quo_env),
ctx$mask
)
return()
} else if (all(inner_agg_exprs)) {
# Something like: fun(agg(x), agg(y))
# So based on the aggregations that have been extracted, mutate after
agg_field_refs <- make_field_refs(names(ctx$aggregations))
agg_field_types <- lapply(ctx$aggregations, function(x) x$data$type())
mutate_mask <- arrow_mask(
list(
selected_columns = agg_field_refs,
.data = list(
schema = schema(!!!agg_field_types)
)
)
)
value <- arrow_eval_or_stop(
as_quosure(expr, ctx$quo_env),
mutate_mask
)
if (!inherits(value, "Expression")) {
value <- Expression$scalar(value)
}
ctx$post_mutate[[name]] <- value
return()
}
# Backstop for any other odd cases, like fun(x, y) (i.e. no aggregation),
# or aggregation functions that aren't supported in Arrow (not in agg_funcs)
abort(
paste(
"Expression", format_expr(quosure),
"is not an aggregate expression or is not supported in Arrow"
)
)
}
# This function recurses through expr, pulls out any aggregation expressions,
# and inserts a variable name (field ref) in place of the aggregation
extract_aggregations <- function(expr, ctx) {
# Keep the input in case we need to raise an error message with it
original_expr <- expr
funs <- all_funs(expr)
if (length(funs) == 0) {
return(expr)
} else if (length(funs) > 1) {
# Recurse more
expr[-1] <- lapply(expr[-1], extract_aggregations, ctx)
}
if (funs[1] %in% names(agg_funcs)) {
inner_agg_exprs <- all_vars(expr) %in% names(ctx$aggregations)
if (any(inner_agg_exprs)) {
# We can't aggregate over a combination of dataset columns and other
# aggregations (e.g. sum(x - mean(x)))
# TODO: support in ARROW-13926
abort(
paste(
"Aggregate within aggregate expression",
format_expr(original_expr),
"not supported in Arrow"
)
)
}
# We have an aggregation expression with no other aggregations inside it,
# so arrow_eval the expression on the data and give it a ..temp name prefix,
# then insert that name (symbol) back into the expression so that we can
# mutate() on the result of the aggregation and reference this field.
tmpname <- paste0("..temp", length(ctx$aggregations))
ctx$aggregations[[tmpname]] <- arrow_eval_or_stop(as_quosure(expr, ctx$quo_env), ctx$mask)
expr <- as.symbol(tmpname)
}
expr
}
# This function recurses through expr and wraps each call to quantile() with a
# call to arrow_list_element()
wrap_hash_quantile <- function(expr) {
if (length(expr) == 1) {
return(expr)
} else {
if (is.call(expr) && any(c(quote(quantile), quote(stats::quantile)) == expr[[1]])) {
return(str2lang(paste0("arrow_list_element(", deparse1(expr), ", 0L)")))
} else {
return(as.call(lapply(expr, wrap_hash_quantile)))
}
}
}