forked from video-dev/hls.js
-
Notifications
You must be signed in to change notification settings - Fork 0
/
task-loop.ts
131 lines (119 loc) · 4.04 KB
/
task-loop.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/**
* Sub-class specialization of EventHandler base class.
*
* TaskLoop allows to schedule a task function being called (optionnaly repeatedly) on the main loop,
* scheduled asynchroneously, avoiding recursive calls in the same tick.
*
* The task itself is implemented in `doTick`. It can be requested and called for single execution
* using the `tick` method.
*
* It will be assured that the task execution method (`tick`) only gets called once per main loop "tick",
* no matter how often it gets requested for execution. Execution in further ticks will be scheduled accordingly.
*
* If further execution requests have already been scheduled on the next tick, it can be checked with `hasNextTick`,
* and cancelled with `clearNextTick`.
*
* The task can be scheduled as an interval repeatedly with a period as parameter (see `setInterval`, `clearInterval`).
*
* Sub-classes need to implement the `doTick` method which will effectively have the task execution routine.
*
* Further explanations:
*
* The baseclass has a `tick` method that will schedule the doTick call. It may be called synchroneously
* only for a stack-depth of one. On re-entrant calls, sub-sequent calls are scheduled for next main loop ticks.
*
* When the task execution (`tick` method) is called in re-entrant way this is detected and
* we are limiting the task execution per call stack to exactly one, but scheduling/post-poning further
* task processing on the next main loop iteration (also known as "next tick" in the Node/JS runtime lingo).
*/
export default class TaskLoop {
private readonly _boundTick: () => void;
private _tickTimer: number | null = null;
private _tickInterval: number | null = null;
private _tickCallCount = 0;
constructor() {
this._boundTick = this.tick.bind(this);
}
public destroy() {
this.onHandlerDestroying();
this.onHandlerDestroyed();
}
protected onHandlerDestroying() {
// clear all timers before unregistering from event bus
this.clearNextTick();
this.clearInterval();
}
protected onHandlerDestroyed() {}
/**
* @returns {boolean}
*/
public hasInterval(): boolean {
return !!this._tickInterval;
}
/**
* @returns {boolean}
*/
public hasNextTick(): boolean {
return !!this._tickTimer;
}
/**
* @param {number} millis Interval time (ms)
* @returns {boolean} True when interval has been scheduled, false when already scheduled (no effect)
*/
public setInterval(millis: number): boolean {
if (!this._tickInterval) {
this._tickInterval = self.setInterval(this._boundTick, millis);
return true;
}
return false;
}
/**
* @returns {boolean} True when interval was cleared, false when none was set (no effect)
*/
public clearInterval(): boolean {
if (this._tickInterval) {
self.clearInterval(this._tickInterval);
this._tickInterval = null;
return true;
}
return false;
}
/**
* @returns {boolean} True when timeout was cleared, false when none was set (no effect)
*/
public clearNextTick(): boolean {
if (this._tickTimer) {
self.clearTimeout(this._tickTimer);
this._tickTimer = null;
return true;
}
return false;
}
/**
* Will call the subclass doTick implementation in this main loop tick
* or in the next one (via setTimeout(,0)) in case it has already been called
* in this tick (in case this is a re-entrant call).
*/
public tick(): void {
this._tickCallCount++;
if (this._tickCallCount === 1) {
this.doTick();
// re-entrant call to tick from previous doTick call stack
// -> schedule a call on the next main loop iteration to process this task processing request
if (this._tickCallCount > 1) {
// make sure only one timer exists at any time at max
this.tickImmediate();
}
this._tickCallCount = 0;
}
}
public tickImmediate(): void {
this.clearNextTick();
this._tickTimer = self.setTimeout(this._boundTick, 0);
}
/**
* For subclass to implement task logic
* @abstract
*/
protected doTick(): void {}
}