The ngram.py
module implements n-gram models with different smoothing techniques:
- Maximum likelihood (no smoothing)
- Additive smoothing (incl. Laplace smoothing, expected likelihood estimation, etc.)
- Simple Good-Turing smoothing (Gale, 1995)
Name | Name | Last commit date | ||
---|---|---|---|---|
parent directory.. | ||||
The ngram.py
module implements n-gram models with different smoothing techniques: