-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
286 lines (232 loc) · 12.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import warnings
warnings.filterwarnings("ignore")
import numpy as np
import shutil
import torch
import argparse
from utils_HSI import sample_gt, metrics, seed_worker, set_requires_grad
from datasets import get_dataset, HyperX
import time
import os
from datetime import datetime
from model.generator import SSDGnet
from model.Discriminator import discriminator
from model.MINet import ResnetGenerator
from losses import MI_loss
parser = argparse.ArgumentParser(description='PyTorch S2AMSnet')
parser.add_argument('--save_path', type=str, default='./results/')
parser.add_argument('--data_path', type=str, default='./datasets/Houston/')
parser.add_argument('--source_name', type=str, default='Houston13',
help='the name of the source dir')
parser.add_argument('--target_name', type=str, default='Houston18',
help='the name of the test dir')
group_train = parser.add_argument_group('Training')
group_train.add_argument('--temp', type=float, default=0.07, help='temperature for contrastive loss function')
group_train.add_argument('--patch_size', type=int, default=13,
help="Size of the spatial neighbourhood (optional, if ""absent will be set by the model)Houston:11;Pavia:7")
group_train.add_argument('--lr', type=float, default=1e-3,
help="Learning rate, set by the model if not specified.")
group_train.add_argument('--batch_size', type=int, default=256,
help="Batch size (optional, if absent will be set by the model")
group_train.add_argument('--max_epoch', type=int, default=400)
group_train.add_argument('--test_stride', type=int, default=1,
help="Sliding window step stride during inference (default = 1)")
group_train.add_argument('--training_sample_ratio', type=float, default=0.8,
help='training sample ratio')
group_train.add_argument('--re_ratio', type=int, default=5,
help='multiple of of data augmentation')
group_train.add_argument('--seed', type=int, default=333,
help='random seed ')
group_train.add_argument('--gpu', type=int, default=0,
help="Specify CUDA device (defaults to -1, which learns on CPU)")
group_train.add_argument('--log_interval', type=int, default=40)
group_model = parser.add_argument_group('model')
group_model.add_argument('--pro_dim', type=int, default=128)
group_model.add_argument("--GIN", type=bool, default=True, help='global intensity non-linear augmentation')
group_model.add_argument("--adv", type=bool, default=True, help='global intensity non-linear augmentation')
group_model.add_argument("--noise", type=bool, default=True, help='noise z')
group_model.add_argument('--nce_layers', type=str, default='0,4,8,12,16', help='compute NCE loss on which layers')
group_model.add_argument('--num_patches', type=int, default=256, help='number of patches per layer')
group_model.add_argument('--lambda_NCE', type=float, default=1.0, help='weight for NCE loss: NCE(G(X), X)')
group_model.add_argument('--GIN_ch', type=int, default=24, help='channel of GIN')
group_da = parser.add_argument_group('Data augmentation')
group_da.add_argument('--flip_augmentation', action='store_true', default=False,
help="Random flips (if patch_size > 1)")
group_da.add_argument('--radiation_augmentation', action='store_true',default=False,
help="Random radiation noise (illumination)")
group_da.add_argument('--mixture_augmentation', action='store_true',default=False,
help="Random mixes between spectra")
args = parser.parse_args()
def evaluate(net, val_loader, gpu):
ps = []
ys = []
for i,(x1, y1) in enumerate(val_loader):
y1 = y1 - 1
with torch.no_grad():
x1 = x1.to(gpu)
p1 = net(x1)
p1 = p1.argmax(dim=1)
ps.append(p1.detach().cpu().numpy())
ys.append(y1.numpy())
ps = np.concatenate(ps)
ys = np.concatenate(ys)
acc = np.mean(ys==ps)*100
results = metrics(ps, ys, n_classes=ys.max() + 1)
return acc, results
def experiment():
train_res = {
'best_epoch': 0,
'best_acc': 0,
'Confusion_matrix': [],
'OA': 0,
'TPR': 0,
'F1scores': 0,
'kappa': 0,
'finished': False
}
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
hyperparams = vars(args)
print(hyperparams)
s = ''
for k, v in args.__dict__.items():
s += '\t' + k + '\t' + str(v) + '\n'
f = open(log_dir + '/settings.txt', 'w+')
f.write(s)
f.close()
seed_worker(args.seed)
img_src, gt_src, LABEL_VALUES_src, IGNORED_LABELS, RGB_BANDS, palette = get_dataset(args.source_name,
args.data_path)
img_tar, gt_tar, LABEL_VALUES_tar, IGNORED_LABELS, RGB_BANDS, palette = get_dataset(args.target_name,
args.data_path)
sample_num_src = len(np.nonzero(gt_src)[0])
sample_num_tar = len(np.nonzero(gt_tar)[0])
tmp = args.training_sample_ratio*args.re_ratio*sample_num_src/sample_num_tar
num_classes = gt_src.max()
N_BANDS = img_src.shape[-1]
hyperparams.update({'n_classes': num_classes, 'n_bands': N_BANDS, 'ignored_labels': IGNORED_LABELS,
'device': args.gpu, 'center_pixel': None, 'supervision': 'full'})
r = int(hyperparams['patch_size']/2)+1
img_src=np.pad(img_src,((r,r),(r,r),(0,0)),'symmetric')
img_tar=np.pad(img_tar,((r,r),(r,r),(0,0)),'symmetric')
gt_src=np.pad(gt_src,((r,r),(r,r)),'constant',constant_values=(0,0))
gt_tar=np.pad(gt_tar,((r,r),(r,r)),'constant',constant_values=(0,0))
train_gt_src, _, _, _ = sample_gt(gt_src, args.training_sample_ratio, mode='random')
test_gt_tar, _, _, _ = sample_gt(gt_tar, 1, mode='random')
img_src_con, train_gt_src_con = img_src, train_gt_src
if tmp < 1:
for i in range(args.re_ratio-1):
img_src_con = np.concatenate((img_src_con,img_src))
train_gt_src_con = np.concatenate((train_gt_src_con,train_gt_src))
hyperparams_train = hyperparams.copy()
hyperparams_train['flip_augmentation'] = True
hyperparams_train['radiation_augmentation'] = True
g = torch.Generator()
g.manual_seed(args.seed)
train_dataset = HyperX(img_src_con, train_gt_src_con, **hyperparams_train)
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=hyperparams['batch_size'],
pin_memory=True,
worker_init_fn=seed_worker,
generator=g,
shuffle=True)
test_dataset = HyperX(img_tar, test_gt_tar, **hyperparams)
test_loader = torch.utils.data.DataLoader(test_dataset,
pin_memory=True,
batch_size=hyperparams['batch_size'])
D_net = discriminator(inchannel=N_BANDS, outchannel=args.pro_dim, num_classes=num_classes, patch_size=hyperparams['patch_size']).to(args.gpu)
D_opt = torch.optim.Adam(D_net.parameters(), lr=args.lr)
G_net = SSDGnet(args).to(args.gpu)
G_opt = torch.optim.Adam(G_net.parameters(), lr=args.lr)
MINet = ResnetGenerator(input_nc=N_BANDS, output_nc=N_BANDS, ngf=8, norm_layer=torch.nn.InstanceNorm2d,
use_dropout=False, no_antialias=False, no_antialias_up=False, n_blocks=6).to(args.gpu)
flag_MI = True
cls_criterion = torch.nn.CrossEntropyLoss()
best_acc = 0
taracc, taracc_list = 0, []
for epoch in range(1,args.max_epoch+1):
t1 = time.time()
loss_list = []
D_net.train()
for i, (x, y) in enumerate(train_loader):
x, y = x.to(args.gpu), y.to(args.gpu)
y = y - 1
D_opt.zero_grad()
G_opt.zero_grad()
aug_img1, aug_img2 = G_net(x)
alpha1 = np.random.beta(0.6, 0.6)
alpha2 = np.random.beta(0.6, 0.6)
mix_img1 = alpha1 * aug_img1 + (1 - alpha1) * x
mix_img2 = alpha2 * aug_img2 + (1 - alpha2) * x
loss_MI = MI_loss(x, aug_img2, MINet, args) + MI_loss(x, aug_img1, MINet, args)
if flag_MI:
opt_MI = torch.optim.Adam(MINet.parameters(), lr=args.lr)
opt_MI.zero_grad()
flag_MI = False
loss_MI = MI_loss(x, aug_img2, MINet, args) + MI_loss(x, aug_img1, MINet, args)
predict1 = D_net(aug_img1.detach())
predict2 = D_net(aug_img2.detach())
predict3 = D_net(mix_img1.detach())
predict4 = D_net(mix_img2.detach())
loss_aug1 = cls_criterion(predict1, y.long())
loss_aug2 = cls_criterion(predict2, y.long())
loss_aug3 = cls_criterion(predict3, y.long())
loss_aug4 = cls_criterion(predict4, y.long())
prob1 = torch.softmax(predict1, dim=1)
prob2 = torch.softmax(predict2, dim=1)
prob3 = torch.softmax(predict3, dim=1)
prob4 = torch.softmax(predict4, dim=1)
loss_kl = torch.nn.KLDivLoss()(prob1, prob4) + torch.nn.KLDivLoss()(prob2, prob3)
loss_min = loss_kl + loss_aug1 + loss_aug2+ loss_aug3 + loss_aug4
loss_min.backward()
D_opt.step()
set_requires_grad(D_net, False)
predict1 = D_net(aug_img1)
predict2 = D_net(aug_img2)
predict3 = D_net(mix_img1)
predict4 = D_net(mix_img2)
prob1 = torch.softmax(predict1, dim=1)
prob2 = torch.softmax(predict2, dim=1)
prob3 = torch.softmax(predict3, dim=1)
prob4 = torch.softmax(predict4, dim=1)
loss_kl = torch.nn.KLDivLoss()(prob1, prob4) + torch.nn.KLDivLoss()(prob2, prob3)
loss_max = -loss_kl + loss_MI
loss_max.backward()
set_requires_grad(D_net, True)
D_opt.step()
G_opt.step()
opt_MI.step()
loss_list.append([loss_max.item(), loss_min.item()])
loss_max, loss_min = np.mean(loss_list, 0)
t2 = time.time()
D_net.eval()
taracc, results = evaluate(D_net, test_loader, args.gpu)
if best_acc < taracc:
best_acc = taracc
torch.save({'Discriminator': D_net.state_dict()}, os.path.join(log_dir, f'best.pth'))
train_res['best_epoch'] = epoch
train_res['best_acc'] = '{:.2f}'.format(best_acc)
train_res['Confusion_matrix'] = '{:}'.format(results['Confusion_matrix'])
train_res['OA'] = '{:.2f}'.format(results['Accuracy'])
train_res['TPR'] = '{:}'.format(np.round(results['TPR'] * 100, 2))
train_res['F1scores'] = '{:}'.format(results["F1_scores"])
train_res['kappa'] = '{:.4f}'.format(results["Kappa"])
print(
f'epoch {epoch}, train {len(train_loader.dataset)}, time {t2 - t1:.2f}, loss_min {loss_min:.4f} loss_max {loss_max:.4f} /// Test {len(test_loader.dataset)}, taracc {taracc:.2f}')
with open(log_dir + '/train_log.txt', 'w+') as f:
for key, value in train_res.items():
f.write(f"{key}: {value}\n")
f.close()
if __name__=='__main__':
repeat_time = 10
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
now_time = datetime.now()
time_str = datetime.strftime(now_time, '%Y%m%d%H%M%S')
exp_name = '{}/{}'.format(args.save_path, args.source_name+'to'+args.target_name+'_'+time_str)
for i in range(repeat_time):
timestamp = time.strftime('%Y%m%d%H%M', time.localtime(time.time()))
log_dir = os.path.join(BASE_DIR, exp_name, 'lr_' + str(args.lr) +
'_pt' + str(args.patch_size) + '_bs' + str(args.batch_size) + '_' +timestamp)
log_dir = log_dir.replace('\\', '/')
if not os.path.exists(log_dir):
os.makedirs(log_dir)
experiment()