-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain_net.py
277 lines (233 loc) · 10.3 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
"""
DeepLab Training Script.
This script is a simplified version of the training script in detectron2/tools.
"""
import os
import torch
import itertools
import numpy as np
import json
from collections import OrderedDict
import detectron2.data.transforms as T
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import DatasetMapper, MetadataCatalog, build_detection_train_loader, DatasetCatalog, build_detection_test_loader
from detectron2.data.datasets import load_sem_seg
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch
from detectron2.evaluation import CityscapesSemSegEvaluator, DatasetEvaluators, SemSegEvaluator
from detectron2.projects.deeplab import add_deeplab_config, build_lr_scheduler
from detectron2.utils.comm import all_gather, is_main_process, synchronize
from detectron2.utils.file_io import PathManager
opj = os.path.join
def build_sem_seg_train_aug(cfg):
augs = [
T.Resize((1024, 2048)),
#T.Resize((1024, 2048)),
T.ResizeShortestEdge(
cfg.INPUT.MIN_SIZE_TRAIN, cfg.INPUT.MAX_SIZE_TRAIN, cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING
),
T.RandomRotation([-90, 90]),
T.RandomBrightness(0.6, 1.4),
T.RandomSaturation(0.6, 1.4),
T.RandomLighting(0.3),
T.RandomCrop_CategoryAreaConstraint(
cfg.INPUT.CROP.TYPE,
cfg.INPUT.CROP.SIZE,
cfg.INPUT.CROP.SINGLE_CATEGORY_MAX_AREA,
0.,
)
]
augs.append(T.RandomFlip())
return augs
class SemSegAPEvaluator(SemSegEvaluator):
def evaluate(self):
"""
Evaluates standard semantic segmentation metrics (http://cocodataset.org/#stuff-eval):
* Mean intersection-over-union averaged across classes (mIoU)
* Frequency Weighted IoU (fwIoU)
* Mean pixel accuracy averaged across classes (mACC)
* Pixel Accuracy (pACC)
"""
if self._distributed:
synchronize()
conf_matrix_list = all_gather(self._conf_matrix)
self._predictions = all_gather(self._predictions)
self._predictions = list(itertools.chain(*self._predictions))
if not is_main_process():
return
self._conf_matrix = np.zeros_like(self._conf_matrix)
for conf_matrix in conf_matrix_list:
self._conf_matrix += conf_matrix
if self._output_dir:
PathManager.mkdirs(self._output_dir)
file_path = os.path.join(self._output_dir, "sem_seg_predictions.json")
with PathManager.open(file_path, "w") as f:
f.write(json.dumps(self._predictions))
acc = np.full(self._num_classes, np.nan, dtype=np.float)
iou = np.full(self._num_classes, np.nan, dtype=np.float)
tp = self._conf_matrix.diagonal()[:-1].astype(np.float)
pos_gt = np.sum(self._conf_matrix[:-1, :-1], axis=0).astype(np.float)
class_weights = pos_gt / np.sum(pos_gt)
pos_pred = np.sum(self._conf_matrix[:-1, :-1], axis=1).astype(np.float)
acc_valid = pos_gt > 0
acc[acc_valid] = tp[acc_valid] / pos_gt[acc_valid]
iou_valid = (pos_gt + pos_pred) > 0
union = pos_gt + pos_pred - tp
iou[acc_valid] = tp[acc_valid] / union[acc_valid]
macc = np.sum(acc[acc_valid]) / np.sum(acc_valid)
miou = np.sum(iou[acc_valid]) / np.sum(iou_valid)
fiou = np.sum(iou[acc_valid] * class_weights[acc_valid])
pacc = np.sum(tp) / np.sum(pos_gt)
res = {}
res["mIoU"] = 100 * miou
res["fwIoU"] = 100 * fiou
for i, name in enumerate(self._class_names):
res["IoU-{}".format(name)] = 100 * iou[i]
res["mACC"] = 100 * macc
res["pACC"] = 100 * pacc
for i, name in enumerate(self._class_names):
res["ACC-{}".format(name)] = 100 * acc[i]
prec = np.full(self._num_classes, np.nan, dtype=np.float)
prec_valid = pos_pred > 0
prec[prec_valid] = tp[prec_valid] / pos_pred[prec_valid]
res["mPREC"] = 100 * np.mean(prec)
for i, name in enumerate(self._class_names):
res["PREC-{}".format(name)] = 100 * prec[i]
for i, name_i in enumerate(self._class_names):
for j, name_j in enumerate(self._class_names):
res["CONF-{}-{}".format(name_i, name_j)] = self._conf_matrix[i, j]
if self._output_dir:
file_path = os.path.join(self._output_dir, "sem_seg_evaluation.pth")
with PathManager.open(file_path, "wb") as f:
torch.save(res, f)
results = OrderedDict({"sem_seg": res})
self._logger.info(results)
return results
class Trainer(DefaultTrainer):
"""
We use the "DefaultTrainer" which contains a number pre-defined logic for
standard training workflow. They may not work for you, especially if you
are working on a new research project. In that case you can use the cleaner
"SimpleTrainer", or write your own training loop.
"""
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
"""
Create evaluator(s) for a given dataset.
This uses the special metadata "evaluator_type" associated with each builtin dataset.
For your own dataset, you can simply create an evaluator manually in your
script and do not have to worry about the hacky if-else logic here.
"""
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
return SemSegAPEvaluator(
dataset_name,
distributed=True,
output_dir=output_folder,
)
@classmethod
def build_train_loader(cls, cfg):
if "SemanticSegmentor" in cfg.MODEL.META_ARCHITECTURE:
mapper = DatasetMapper(cfg, is_train=True, augmentations=build_sem_seg_train_aug(cfg))
else:
mapper = None
return build_detection_train_loader(cfg, mapper=mapper)
@classmethod
def build_test_loader(cls, cfg, dataset_name):
if "SemanticSegmentor" in cfg.MODEL.META_ARCHITECTURE:
mapper = DatasetMapper(cfg, is_train=False, augmentations=[T.Resize((1024, 2048)),])
else:
mapper = None
return build_detection_test_loader(cfg, dataset_name=dataset_name, mapper=mapper)
@classmethod
def build_lr_scheduler(cls, cfg, optimizer):
"""
It now calls :func:`detectron2.solver.build_lr_scheduler`.
Overwrite it if you'd like a different scheduler.
"""
return build_lr_scheduler(cfg, optimizer)
# @classmethod
# def build_optimizer(cls, cfg, model):
# """
# Returns:
# torch.optim.Optimizer:
# It now calls :func:`detectron2.solver.build_optimizer`.
# Overwrite it if you'd like a different optimizer.
# """
# return build_optimizer(cfg, model)
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_deeplab_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES = 5
cfg.freeze()
default_setup(cfg, args)
return cfg
def register_zero_waste_semseg(data_root):
data_paths = {}
for split in ["train", "val", "test"]:
img_folder = opj(data_root, split, "data")
ann_path = opj(data_root, split, "labels.json")
sem_seg_path = opj(data_root, split, "sem_seg")
data_paths[split] = (img_folder, ann_path, sem_seg_path)
def get_train_dataloader():
return load_sem_seg(gt_root=data_paths["train"][2],
image_root=data_paths["train"][0],
gt_ext='PNG', image_ext='PNG')
def get_val_dataloader():
return load_sem_seg(gt_root=data_paths["val"][2],
image_root=data_paths["val"][0],
gt_ext='PNG', image_ext='PNG')
def get_test_dataloader():
return load_sem_seg(gt_root=data_paths["test"][2],
image_root=data_paths["test"][0],
gt_ext='PNG', image_ext='PNG')
print("Registering the zero-waste dataset splits")
DatasetCatalog.register("zero-waste-semseg-train", get_train_dataloader)
DatasetCatalog.register("zero-waste-semseg-val", get_val_dataloader)
DatasetCatalog.register("zero-waste-semseg-test", get_test_dataloader)
class_names = ["background", 'rigid_plastic', 'cardboard', 'metal', 'soft_plastic']
class_colors = [(0, 0, 0), (255, 0, 0), (0, 255, 0), (0, 0, 255), (125, 0, 125)]
# adding the metadata
for split in ["train", "val", "test"]:
#MetadataCatalog.get("zero-waste-semseg-%s" % split).thing_classes = class_names[1:]
MetadataCatalog.get("zero-waste-semseg-%s" % split).stuff_classes = class_names
MetadataCatalog.get("zero-waste-semseg-%s" % split).evaluator_type = "sem_seg"
#MetadataCatalog.get("zero-waste-semseg-%s" % split).thing_colors = class_colors[1:]
MetadataCatalog.get("zero-waste-semseg-%s" % split).stuff_colors = class_colors
MetadataCatalog.get("zero-waste-semseg-%s" % split).ignore_label = 255
def main(args):
register_zero_waste_semseg(args.dataroot)
cfg = setup(args)
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
parser = default_argument_parser()
parser.add_argument("--dataroot", type=str, default="/scratch2/dinka/data/recycling/splits/",
help="root folder for the dataset on the disk")
args = parser.parse_args()
print("Command Line Args:", args)
#main(args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)