-
Notifications
You must be signed in to change notification settings - Fork 10
/
utils.py
319 lines (284 loc) · 10.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import os
import torch
import torchvision as tv
import numpy as np
import cv2
import mediapipe as mp
from scipy.spatial import ConvexHull
from folder_paths import models_dir
from .BiSeNet import BiSeNet
from ultralytics import YOLO
from onnxruntime import InferenceSession, get_available_providers
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
from skimage import transform as trans
arcface_dst = np.array(
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
[41.5493, 92.3655], [70.7299, 92.2041]],
dtype=np.float32)
def estimate_norm(lmk, image_size=112,mode='arcface'):
assert lmk.shape == (5, 2)
assert image_size%112==0 or image_size%128==0
if image_size%112==0:
ratio = float(image_size)/112.0
diff_x = 0
else:
ratio = float(image_size)/128.0
diff_x = 8.0*ratio
dst = arcface_dst * ratio
dst[:,0] += diff_x
tform = trans.SimilarityTransform()
tform.estimate(lmk, dst)
M = tform.params[0:2, :]
return M
def pad_to_stride(image, stride=32):
h, w, _ = image.shape
pr = (stride - w % stride) % stride
pb = (stride - h % stride) % stride
padded_image = tv.transforms.transforms.F.pad(image.permute(2,0,1), (0, 0, pr, pb)).permute(1,2,0)
return padded_image
def resize(img, size):
h, w, _ = img.shape
s = max(h, w)
scale_factor = s / size
ph, pw = (s - h) // 2, (s - w) // 2
pad = tv.transforms.Pad((pw, ph))
resize = tv.transforms.Resize(size=(size, size), antialias=True)
img = resize(pad(img.permute(2,0,1))).permute(1,2,0)
return img, scale_factor, ph, pw
class Models:
@classmethod
def yolo(cls, img, threshold):
if '_yolo' not in cls.__dict__:
cls._yolo = YOLO(os.path.join(models_dir,'ultralytics','bbox','face_yolov8m.pt'))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
cls._yolo = cls._yolo.to(device)
dets = cls._yolo(img, conf=threshold)[0]
return dets
@classmethod
def lmk(cls, crop):
if '_lmk' not in cls.__dict__:
cls._lmk = InferenceSession(os.path.join(models_dir, 'landmarks', 'fan2_68_landmark.onnx'), providers=get_available_providers())
lmk = cls._lmk.run(None, {'input': crop})[0]
return lmk
def get_submatrix_with_padding(img, a, b, c, d):
pl = -min(a, 0)
pt = -min(b, 0)
pr = -min(img.shape[1] - c, 0)
pb = -min(img.shape[0] - d, 0)
a, b, c, d = max(a, 0), max(b, 0), min(c, img.shape[1]), min(d, img.shape[0])
submatrix = img[b:d, a:c].permute(2,0,1)
pad = tv.transforms.Pad((pl, pt, pr, pb))
submatrix = pad(submatrix).permute(1,2,0)
return submatrix
class Face:
def __init__(self, img, a, b, c, d) -> None:
self.img = img
lmk = None
best_score = 0
i = 0
crop = get_submatrix_with_padding(self.img, a, b, c, d)
for curr_i in range(4):
rcrop, s, ph, pw = resize(crop.rot90(curr_i), 256)
rcrop = (rcrop[None] / 255).permute(0,3,1,2).type(torch.float32).numpy()
curr_lmk = Models.lmk(rcrop)
score = np.mean(curr_lmk[0,:,2])
if score > best_score:
best_score = score
lmk = curr_lmk
i = curr_i
self.bbox = (a,b,c,d)
self.w = c - a
self.h = d - b
self.confidence = best_score
self.kps = np.vstack([
lmk[0,[37,38,40,41],:2].mean(axis=0),
lmk[0,[43,44,46,47],:2].mean(axis=0),
lmk[0,[30,48,54],:2]
]) * 4 * s
self.T2 = np.array([[1, 0, -a], [0, 1, -b], [0, 0, 1]])
rot = cv2.getRotationMatrix2D((128*s,128*s), 90*i, 1)
self.R = np.vstack((rot, np.array((0,0,1))))
def crop(self, size, crop_factor):
S = np.array([[1/crop_factor, 0, 0], [0, 1/crop_factor, 0], [0, 0, 1]])
M = estimate_norm(self.kps, size)
N = M @ self.R @ self.T2
cx, cy = np.array((size/2, size/2, 1)) @ cv2.invertAffineTransform(M @ self.R @ self.T2).T
T3 = np.array([[1, 0, -cx], [0, 1, -cy], [0, 0, 1]])
T4 = np.array([[1, 0, cx], [0, 1, cy], [0, 0, 1]])
N = N @ T4 @ S @ T3
crop = cv2.warpAffine(self.img.numpy(), N, (size, size))
crop = torch.from_numpy(crop)[None]
return N, crop
def detect_faces(img, threshold):
img = pad_to_stride(img, stride=32)
dets = Models.yolo((img[None] / 255).permute(0,3,1,2), threshold)
boxes = (dets.boxes.xyxy.reshape(-1,2,2)).reshape(-1,4)
faces = []
for (a,b,c,d), box in zip(boxes.type(torch.int).cpu().numpy(), dets.boxes):
cx, cy = (a+c)/2, (b+d)/2
r = np.sqrt((c-a)**2 + (d-b)**2) / 2
a,b,c,d = [int(x) for x in (cx - r, cy - r, cx + r, cy + r)]
face = Face(img, a, b, c, d)
faces.append(face)
return faces
def get_face_mesh(crop: torch.Tensor):
with mp.solutions.face_mesh.FaceMesh(max_num_faces=10) as face_mesh:
mesh = face_mesh.process(crop.mul(255).type(torch.uint8)[0].numpy())
_, h, w, _ = crop.shape
if mesh.multi_face_landmarks is not None:
all_pts = np.array([np.array([(w*l.x, h*l.y) for l in lmks.landmark]) for lmks in mesh.multi_face_landmarks], dtype=np.int32)
idx = np.argmin(np.abs(all_pts - np.array([w/2,h/2])).sum(axis=(1,2)))
points = all_pts[idx]
return points
else:
return None
def mask_simple_square(face, M, crop):
# rotated bbox and size
h,w = crop.shape[1:3]
a,b,c,d = face.bbox
rect = np.array([
[a,b,1],
[a,d,1],
[c,b,1],
[c,d,1],
]) @ M.T
lx, ly = [int(x) for x in np.min(rect, axis=0)]
hx, hy = [int(x) for x in np.max(rect, axis=0)]
mask = np.zeros((h,w), dtype=np.float32)
mask = cv2.rectangle(mask, (lx,ly), (hx,hy), 1, -1)
mask = torch.from_numpy(mask)[None]
return mask
def mask_convex_hull(face, M, crop):
h,w = crop.shape[1:3]
points = get_face_mesh(crop)
if points is None: return mask_simple_square(face, M, crop)
hull = ConvexHull(points)
mask = np.zeros((h,w), dtype=np.int32)
cv2.fillPoly(mask, [points[hull.vertices,:]], color=1)
mask = mask.astype(np.float32)
mask = torch.from_numpy(mask[None])
return mask
def mask_BiSeNet(crop,
skin=True,
l_brow=True,
r_brow=True,
l_eye=True,
r_eye=True,
eye_g=True,
l_ear=True,
r_ear=True,
ear_r=True,
nose=True,
mouth=True,
u_lip=True,
l_lip=True,
neck=False,
neck_l=False,
cloth=False,
hair=False,
hat=False,
):
with torch.no_grad():
bisenet = BiSeNet(n_classes=19)
bisenet.cuda()
model_path = os.path.join(models_dir, 'bisenet', '79999_iter.pth')
bisenet.load_state_dict(torch.load(model_path))
bisenet.eval()
crop_t = crop.permute(0,3,1,2).cuda().float()
segms_t = bisenet(crop_t)[0].argmax(1).float()
dic = {
'skin': 1,
'l_brow': 2,
'r_brow': 3,
'l_eye': 4,
'r_eye': 5,
'eye_g': 6,
'l_ear': 7,
'r_ear': 8,
'ear_r': 9,
'nose': 10,
'mouth': 11,
'u_lip': 12,
'l_lip': 13,
'neck': 14,
'neck_l': 15,
'cloth': 16,
'hair': 17,
'hat': 18,
}
keep = []
for k, v in locals().items():
if k in dic and v:
keep.append(dic[k])
face_part_ids = torch.tensor(keep).cuda()
segms_t = torch.sum(segms_t.repeat(len(face_part_ids), 1,1,1) == face_part_ids[...,None,None,None], axis=0).float()
mask = segms_t.cpu()
return mask
def mask_jonathandinu(crop, skin=True, nose=True, eye_g=True, l_eye=True, r_eye=True, l_brow=True, r_brow=True,
l_ear=True, r_ear=True, mouth=True, u_lip=True, l_lip=True,
hair=False, hat=False, ear_r=False, neck_l=False, neck=False, cloth=False):
global jonathandinu_image_processor, jonathandinu_model
device = (
"cuda"
# Device for NVIDIA or AMD GPUs
if torch.cuda.is_available()
else "mps"
# Device for Apple Silicon (Metal Performance Shaders)
if torch.backends.mps.is_available()
else "cpu"
)
if 'jonathandinu_image_processor' not in globals():
jonathandinu_image_processor = SegformerImageProcessor.from_pretrained("jonathandinu/face-parsing")
jonathandinu_model = SegformerForSemanticSegmentation.from_pretrained("jonathandinu/face-parsing")
jonathandinu_model.to(device)
inputs = jonathandinu_image_processor(images=crop.mul(255).type(torch.uint8), return_tensors="pt").to(device)
with torch.no_grad():
outputs = jonathandinu_model(**inputs)
logits = outputs.logits # shape (batch_size, num_labels, ~height/4, ~width/4)
# resize output to match input image dimensions
upsampled_logits = tv.transforms.functional.resize(logits, crop.shape[1:3], antialias=True)
labels = upsampled_logits.argmax(dim=1)
ids = {
'skin': 1,
'nose': 2,
'eye_g': 3,
'l_eye': 4,
'r_eye': 5,
'l_brow': 6,
'r_brow': 7,
'l_ear': 8,
'r_ear': 9,
'mouth': 10,
'u_lip': 11,
'l_lip': 12,
'hair': 13,
'hat': 14,
'ear_r': 15,
'neck_l': 16,
'neck': 17,
'cloth': 18,
}
keep = []
for k, v in locals().items():
if k in ids and v:
keep.append(ids[k])
face_part_ids = torch.tensor(keep).cuda()
mask = torch.sum(labels.repeat(len(face_part_ids), 1,1,1) == face_part_ids[...,None,None,None], axis=0).float().cpu()
return mask
mask_types = [
'simple_square',
'convex_hull',
'BiSeNet',
'jonathandinu',
# 'clean BiSeNet',
]
mask_funs = {
'simple_square': mask_simple_square,
'convex_hull': mask_convex_hull,
'BiSeNet': lambda face, M, crop: mask_BiSeNet(crop),
'jonathandinu': lambda face, M, crop: mask_jonathandinu(crop),
# 'clean BiSeNet': mask_clean_BiSeNet,
}
def mask_crop(face, M, crop, mask_type):
mask = mask_funs[mask_type](face, M, crop)
return mask