forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgreedy_best_first.py
174 lines (143 loc) · 4.91 KB
/
greedy_best_first.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
"""
https://en.wikipedia.org/wiki/Best-first_search#Greedy_BFS
"""
from __future__ import annotations
grid = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
delta = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right
class Node:
"""
>>> k = Node(0, 0, 4, 5, 0, None)
>>> k.calculate_heuristic()
9
>>> n = Node(1, 4, 3, 4, 2, None)
>>> n.calculate_heuristic()
2
>>> l = [k, n]
>>> n == l[0]
False
>>> l.sort()
>>> n == l[0]
True
"""
def __init__(self, pos_x, pos_y, goal_x, goal_y, g_cost, parent):
self.pos_x = pos_x
self.pos_y = pos_y
self.pos = (pos_y, pos_x)
self.goal_x = goal_x
self.goal_y = goal_y
self.g_cost = g_cost
self.parent = parent
self.f_cost = self.calculate_heuristic()
def calculate_heuristic(self) -> float:
"""
The heuristic here is the Manhattan Distance
Could elaborate to offer more than one choice
"""
dy = abs(self.pos_x - self.goal_x)
dx = abs(self.pos_y - self.goal_y)
return dx + dy
def __lt__(self, other) -> bool:
return self.f_cost < other.f_cost
class GreedyBestFirst:
"""
>>> gbf = GreedyBestFirst((0, 0), (len(grid) - 1, len(grid[0]) - 1))
>>> [x.pos for x in gbf.get_successors(gbf.start)]
[(1, 0), (0, 1)]
>>> (gbf.start.pos_y + delta[3][0], gbf.start.pos_x + delta[3][1])
(0, 1)
>>> (gbf.start.pos_y + delta[2][0], gbf.start.pos_x + delta[2][1])
(1, 0)
>>> gbf.retrace_path(gbf.start)
[(0, 0)]
>>> gbf.search() # doctest: +NORMALIZE_WHITESPACE
[(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 1), (5, 1), (6, 1),
(6, 2), (6, 3), (5, 3), (5, 4), (5, 5), (6, 5), (6, 6)]
"""
def __init__(self, start, goal):
self.start = Node(start[1], start[0], goal[1], goal[0], 0, None)
self.target = Node(goal[1], goal[0], goal[1], goal[0], 99999, None)
self.open_nodes = [self.start]
self.closed_nodes = []
self.reached = False
def search(self) -> list[tuple[int]]:
"""
Search for the path,
if a path is not found, only the starting position is returned
"""
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
current_node = self.open_nodes.pop(0)
if current_node.pos == self.target.pos:
self.reached = True
return self.retrace_path(current_node)
self.closed_nodes.append(current_node)
successors = self.get_successors(current_node)
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(child_node)
else:
# retrieve the best current path
better_node = self.open_nodes.pop(self.open_nodes.index(child_node))
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(child_node)
else:
self.open_nodes.append(better_node)
if not (self.reached):
return [self.start.pos]
def get_successors(self, parent: Node) -> list[Node]:
"""
Returns a list of successors (both in the grid and free spaces)
"""
successors = []
for action in delta:
pos_x = parent.pos_x + action[1]
pos_y = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(grid) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
pos_x,
pos_y,
self.target.pos_y,
self.target.pos_x,
parent.g_cost + 1,
parent,
)
)
return successors
def retrace_path(self, node: Node) -> list[tuple[int]]:
"""
Retrace the path from parents to parents until start node
"""
current_node = node
path = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x))
current_node = current_node.parent
path.reverse()
return path
if __name__ == "__main__":
init = (0, 0)
goal = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
print("------")
greedy_bf = GreedyBestFirst(init, goal)
path = greedy_bf.search()
for elem in path:
grid[elem[0]][elem[1]] = 2
for elem in grid:
print(elem)