|
| 1 | +""" |
| 2 | +Similarity Search : https://en.wikipedia.org/wiki/Similarity_search |
| 3 | +Similarity search is a search algorithm for finding the nearest vector from |
| 4 | +vectors, used in natural language processing. |
| 5 | +In this algorithm, it calculates distance with euclidean distance and |
| 6 | +returns a list containing two data for each vector: |
| 7 | + 1. the nearest vector |
| 8 | + 2. distance between the vector and the nearest vector (float) |
| 9 | +""" |
| 10 | +import math |
| 11 | + |
| 12 | +import numpy as np |
| 13 | + |
| 14 | + |
| 15 | +def euclidean(input_a: np.ndarray, input_b: np.ndarray) -> float: |
| 16 | + """ |
| 17 | + Calculates euclidean distance between two data. |
| 18 | + :param input_a: ndarray of first vector. |
| 19 | + :param input_b: ndarray of second vector. |
| 20 | + :return: Euclidean distance of input_a and input_b. By using math.sqrt(), |
| 21 | + result will be float. |
| 22 | +
|
| 23 | + >>> euclidean(np.array([0]), np.array([1])) |
| 24 | + 1.0 |
| 25 | + >>> euclidean(np.array([0, 1]), np.array([1, 1])) |
| 26 | + 1.0 |
| 27 | + >>> euclidean(np.array([0, 0, 0]), np.array([0, 0, 1])) |
| 28 | + 1.0 |
| 29 | + """ |
| 30 | + return math.sqrt(sum(pow(a - b, 2) for a, b in zip(input_a, input_b))) |
| 31 | + |
| 32 | + |
| 33 | +def similarity_search(dataset: np.ndarray, value_array: np.ndarray) -> list: |
| 34 | + """ |
| 35 | + :param dataset: Set containing the vectors. Should be ndarray. |
| 36 | + :param value_array: vector/vectors we want to know the nearest vector from dataset. |
| 37 | + :return: Result will be a list containing |
| 38 | + 1. the nearest vector |
| 39 | + 2. distance from the vector |
| 40 | +
|
| 41 | + >>> dataset = np.array([[0], [1], [2]]) |
| 42 | + >>> value_array = np.array([[0]]) |
| 43 | + >>> similarity_search(dataset, value_array) |
| 44 | + [[[0], 0.0]] |
| 45 | +
|
| 46 | + >>> dataset = np.array([[0, 0], [1, 1], [2, 2]]) |
| 47 | + >>> value_array = np.array([[0, 1]]) |
| 48 | + >>> similarity_search(dataset, value_array) |
| 49 | + [[[0, 0], 1.0]] |
| 50 | +
|
| 51 | + >>> dataset = np.array([[0, 0, 0], [1, 1, 1], [2, 2, 2]]) |
| 52 | + >>> value_array = np.array([[0, 0, 1]]) |
| 53 | + >>> similarity_search(dataset, value_array) |
| 54 | + [[[0, 0, 0], 1.0]] |
| 55 | +
|
| 56 | + >>> dataset = np.array([[0, 0, 0], [1, 1, 1], [2, 2, 2]]) |
| 57 | + >>> value_array = np.array([[0, 0, 0], [0, 0, 1]]) |
| 58 | + >>> similarity_search(dataset, value_array) |
| 59 | + [[[0, 0, 0], 0.0], [[0, 0, 0], 1.0]] |
| 60 | +
|
| 61 | + These are the errors that might occur: |
| 62 | +
|
| 63 | + 1. If dimensions are different. |
| 64 | + For example, dataset has 2d array and value_array has 1d array: |
| 65 | + >>> dataset = np.array([[1]]) |
| 66 | + >>> value_array = np.array([1]) |
| 67 | + >>> similarity_search(dataset, value_array) |
| 68 | + Traceback (most recent call last): |
| 69 | + ... |
| 70 | + ValueError: Wrong input data's dimensions... dataset : 2, value_array : 1 |
| 71 | +
|
| 72 | + 2. If data's shapes are different. |
| 73 | + For example, dataset has shape of (3, 2) and value_array has (2, 3). |
| 74 | + We are expecting same shapes of two arrays, so it is wrong. |
| 75 | + >>> dataset = np.array([[0, 0], [1, 1], [2, 2]]) |
| 76 | + >>> value_array = np.array([[0, 0, 0], [0, 0, 1]]) |
| 77 | + >>> similarity_search(dataset, value_array) |
| 78 | + Traceback (most recent call last): |
| 79 | + ... |
| 80 | + ValueError: Wrong input data's shape... dataset : 2, value_array : 3 |
| 81 | +
|
| 82 | + 3. If data types are different. |
| 83 | + When trying to compare, we are expecting same types so they should be same. |
| 84 | + If not, it'll come up with errors. |
| 85 | + >>> dataset = np.array([[0, 0], [1, 1], [2, 2]], dtype=np.float32) |
| 86 | + >>> value_array = np.array([[0, 0], [0, 1]], dtype=np.int32) |
| 87 | + >>> similarity_search(dataset, value_array) # doctest: +NORMALIZE_WHITESPACE |
| 88 | + Traceback (most recent call last): |
| 89 | + ... |
| 90 | + TypeError: Input data have different datatype... |
| 91 | + dataset : float32, value_array : int32 |
| 92 | + """ |
| 93 | + |
| 94 | + if dataset.ndim != value_array.ndim: |
| 95 | + raise ValueError( |
| 96 | + f"Wrong input data's dimensions... dataset : {dataset.ndim}, " |
| 97 | + f"value_array : {value_array.ndim}" |
| 98 | + ) |
| 99 | + |
| 100 | + try: |
| 101 | + if dataset.shape[1] != value_array.shape[1]: |
| 102 | + raise ValueError( |
| 103 | + f"Wrong input data's shape... dataset : {dataset.shape[1]}, " |
| 104 | + f"value_array : {value_array.shape[1]}" |
| 105 | + ) |
| 106 | + except IndexError: |
| 107 | + if dataset.ndim != value_array.ndim: |
| 108 | + raise TypeError("Wrong shape") |
| 109 | + |
| 110 | + if dataset.dtype != value_array.dtype: |
| 111 | + raise TypeError( |
| 112 | + f"Input data have different datatype... dataset : {dataset.dtype}, " |
| 113 | + f"value_array : {value_array.dtype}" |
| 114 | + ) |
| 115 | + |
| 116 | + answer = [] |
| 117 | + |
| 118 | + for value in value_array: |
| 119 | + dist = euclidean(value, dataset[0]) |
| 120 | + vector = dataset[0].tolist() |
| 121 | + |
| 122 | + for dataset_value in dataset[1:]: |
| 123 | + temp_dist = euclidean(value, dataset_value) |
| 124 | + |
| 125 | + if dist > temp_dist: |
| 126 | + dist = temp_dist |
| 127 | + vector = dataset_value.tolist() |
| 128 | + |
| 129 | + answer.append([vector, dist]) |
| 130 | + |
| 131 | + return answer |
| 132 | + |
| 133 | + |
| 134 | +if __name__ == "__main__": |
| 135 | + import doctest |
| 136 | + |
| 137 | + doctest.testmod() |
0 commit comments