-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrunk.py
848 lines (723 loc) · 27.9 KB
/
trunk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
import csv
import os
import re
import sys
from pathlib import Path
import librosa
sys.path.append(str(Path(__file__).parent.parent))
import random
from pathlib import Path
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torch.nn.utils.rnn import pad_packed_sequence, pad_sequence, pack_padded_sequence
from utils.audiolib import audioread
from utils.gcc_phat import gcc_phat
from utils.logger import get_logger
from models.conv_stft import STFT
from tqdm import tqdm
def load_f_list(
fname: str,
relative: Union[str, Tuple[str, ...], None] = None,
# dirname: Optional[str] = None,
) -> List:
"""
relative: str or tuple of str each corresponding to element in the file.
return: [(f1, f2..), (...)]
"""
f_list = []
# fname = os.path.join(dirname, fname) if dirname is not None else fname
with open(fname, "r+") as fp:
ctx = csv.reader(fp)
for element in ctx:
if isinstance(relative, tuple):
f_list.append(
tuple(map(lambda x, y: os.path.join(x, y), relative, element))
)
else:
f_list.append(
element
if relative is None
else tuple(map(lambda x: os.path.join(relative, x), element))
)
return f_list
def save_f_list(
fname: str,
f_list: List,
relative: Union[str, Tuple[str, ...], None] = None,
):
"""
fname: csv file contains the training files path with format [(f1, f2..), (f1, f2)]
relative: str or tuple of str each corresponding to element in f_list
"""
dirname = os.path.dirname(fname)
os.makedirs(dirname) if not os.path.exists(dirname) else None
with open(fname, "w+", newline="") as fp:
writer = csv.writer(fp)
for f in f_list:
if isinstance(relative, tuple):
writer.writerow(
tuple(map(lambda x, y: os.path.relpath(x, y), f, relative))
)
else:
writer.writerow(
f
if relative is None
else tuple(map(lambda x: os.path.relpath(x, relative), f))
)
def load_f_list_len(
fname: str,
relative: Union[str, Tuple[str, ...], None] = None,
) -> List:
"""
relative: str or tuple of str each corresponding to element in the file.
return: [(f1, f2..), (...)]
"""
f_list = []
with open(fname, "r+") as fp:
ctx = csv.reader(fp)
for element in ctx:
element, num = element[:-1], element[-1]
if isinstance(relative, tuple):
f_items = list(
map(
lambda x, y: os.path.join(x, y.replace("\\", "/")),
relative,
element,
)
)
# ([...], num)
f_list.append((f_items, num))
else:
if relative is not None:
f_items = list(
map(
lambda x: os.path.join(relative, x.replace("\\", "/")),
element,
)
)
else:
f_items = element
f_list.append((f_items, num))
# f_list.append(
# element
# if relative is None
# else tuple(
# (list(map(lambda x: os.path.join(relative, x), element)), num)
# )
# )
return f_list
def save_f_list_len(
fname: str,
f_list: List,
relative: Union[str, Tuple[str, ...], None] = None,
):
"""
fname: csv file contains the training files path with format [(f1, f2..), (f1, f2)]
relative: str or tuple of str each corresponding to element in f_list
"""
dirname = os.path.dirname(fname)
os.makedirs(dirname) if not os.path.exists(dirname) else None
with open(fname, "w+", newline="") as fp:
writer = csv.writer(fp)
for f, num in f_list:
if isinstance(relative, tuple):
writer.writerow(
tuple(
list(map(lambda x, y: os.path.relpath(x, y), f, relative))
+ [num]
)
)
else:
writer.writerow(
f
if relative is None
else tuple(
list(map(lambda x: os.path.relpath(x, relative), f)) + [num]
)
)
class NSTrunk(Dataset):
"""Dataset class
Args:
dirname: directory contains the (train, label) wav files.
patten: search patten to get noisy wav file;
data_len: length of training file in seconds;
clip_len: seconds;
keymap: replace patten to get corresponding clean wav file.
["str in noisy", "corresponding str in clean"]
under_same_dir: the train and label under the same directory if `True`; otherwise,
the train and label under different directory with the same file name.
return_only_noisy: only used in `__getitem__` method, default False;
return (mic, zeros_like(mic)) if True, otherwise return (mic, sph).
return_abspath: only used in `__next__` method, which return (data, fname), default False;
norm: the normalization value for audio data, default None, while SIG set to -27;
seed: random seed.
Return:
1. call by torch.utils.data.DataLoader
(mic, sph) torch.tensor pair.
2. call by iterator, e.g.
```
for data, fname in NSTrunk():
...
```
(data, fname)
Examples:
1. noisy and clean audio file under the same directory;
NSTrunk(
dirname=xx,
patten="**/*mic.wav",
keymap=("mic", "target"),
)
2. noisy and clean audio file under different directory with the same name;
NSTrunk(
dirname=xx,
clean_dirname=yy,
patten="**/*.wav",
data_len=10.0, # split audio files
clip_len=2.0, # only affects the dataloader
)
3. only return noisy data under validation mode if label is not used;
NSTrunk(
dirname=xx,
patten="**/*mic.wav",
return_only_noisy=True,
)
"""
def __init__(
self,
dirname: str,
patten: str = "**/*.wav",
keymap: Optional[Tuple[str, str]] = None,
flist: Optional[str] = None,
clean_dirname: Optional[str] = None,
data_len: int = -1,
clip_len: int = -1,
seed: Optional[int] = None,
norm: Optional[int] = None,
return_abspath: bool = False,
csv_dir: str = "manifest",
):
super().__init__()
self.dir = Path(dirname)
self.logger = get_logger(dirname)
self.csv_dir = csv_dir
flist = (
os.path.join(csv_dir, os.path.split(dirname)[-1] + ".csv")
if flist is None
else flist
)
self.f_list = self._prepare(flist, patten, keymap, clean_dirname)
if seed is not None:
random.seed(seed)
random.shuffle(self.f_list)
self.keymap = keymap
self.clean_dir = clean_dirname
self.norm = norm
self.return_abspath = return_abspath
self.dataL = data_len
self.clipL = clip_len
assert data_len % clip_len == 0
assert data_len != -1 and clip_len != -1 or data_len == -1 and clip_len == -1
self.n_clip = int(data_len // clip_len)
self.logger.info(f"Get {dirname} {len(self.f_list)} files.")
def _prepare(
self,
fname: Optional[str],
patten: str,
keymap: Optional[Tuple[str, str]] = None,
clean_dirname: Optional[str] = None,
) -> List:
"""
fname: file path of a file list
"""
assert keymap is None or clean_dirname is None
if fname is not None and os.path.exists(fname):
self.logger.info(f"Load flist {fname}")
f_list = load_f_list(
fname,
(
str(self.dir),
str(self.dir) if clean_dirname is None else clean_dirname,
),
)
else:
self.logger.info(f"flist {fname} not exist, regenerating.")
f_list = []
f_mic_list = list(map(str, self.dir.glob(patten)))
# if keymap is not None:
# f_sph = f_mic.replace(str(self.dir), self.clean_dir)
for f_mic in f_mic_list:
if keymap is not None:
# under same directory with different name
dirp, f_mic_name = os.path.split(f_mic)
f_sph = f_mic_name.replace(*keymap)
f_sph = os.path.join(dirp, f_sph)
elif clean_dirname is not None:
# under different directory with same name
f_sph = f_mic.replace(str(self.dir), clean_dirname)
else:
raise RuntimeError("keymap and clean_dirname are both None.")
f_list.append((f_mic, f_sph))
save_f_list(
fname,
f_list,
(
str(self.dir),
str(self.dir) if clean_dirname is None else clean_dirname,
),
) if fname is not None else None
return f_list
def __len__(self):
return len(self.f_list) * self.n_clip
def _split(self, data, fs, slice_idx):
st = fs * slice_idx * self.clipL
ed = st + fs * self.clipL if self.clipL != -1 else None
return data[st:ed]
def __getitem__(self, index) -> Tuple[torch.Tensor, torch.Tensor]:
idx, slice_idx = index // self.n_clip, index % self.n_clip
f_mic, f_sph = self.f_list[idx]
d_mic, fs_1 = audioread(f_mic, sub_mean=True, target_level=self.norm)
d_sph, fs_2 = audioread(f_sph, sub_mean=True, target_level=self.norm)
assert fs_1 == fs_2
d_mic = self._split(d_mic, fs_1, slice_idx)
d_sph = self._split(d_sph, fs_2, slice_idx)
return torch.from_numpy(d_mic).float(), torch.from_numpy(d_sph).float()
def __iter__(self):
self.pick_idx = 0
return self
def __next__(self) -> Tuple[torch.Tensor, str]:
"""used for predict api
return: data, relative path
"""
if self.pick_idx < len(self.f_list):
fname, _ = self.f_list[self.pick_idx]
data, _ = audioread(fname, sub_mean=True, target_level=self.norm)
self.pick_idx += 1
fname = (
fname
if self.return_abspath
else str(Path(fname).relative_to(self.dir.parent))
)
return torch.from_numpy(data).float()[None, :], fname
else:
raise StopIteration
class AECTrunk(Dataset):
"""Dataset class, the data of mic, ref, sph must under the same directory.
Args:
dirname: directory contains the (train, label) wav files.
patten: search patten to get noisy wav file;
data_len: length of training file in seconds;
clip_len: seconds;
keymap: ["str in mic", "corresponding str in ref", "str in sph"]
return_abspath: only used in `__next__` method, which return (data, fname), default False;
norm: the normalization value for audio data, default None, while SIG set to -27;
seed: random seed.
Return:
1. call by torch.utils.data.DataLoader
(mic, ref, sph, scenario) torch.tensor pair.
2. call by iterator, e.g.
```
for mic, ref, fname in NSTrunk():
...
```
Examples:
1. ref, mic and sph audio file must under the same directory;
NSTrunk(
dirname=xx,
patten="**/*mic.wav",
keymap=("mic", "ref", "sph"),
)
"""
NE = 0
FE = 1
DT = 2
def __init__(
self,
dirname: str,
patten: str, # = "**/*.wav",
keymap: Tuple[str, str, str],
flist: Optional[str] = None,
data_len: int = -1,
clip_len: int = -1,
tgt_fs: int = 16000,
seed: Optional[int] = None,
norm: Optional[int] = None,
return_abspath: bool = False,
align: bool = False,
csv_dir: str = "manifest",
ne_flag=["NE"],
dt_flag=["DT"],
fe_flag=["FE"],
):
super().__init__()
self.dir = Path(dirname)
self.logger = get_logger(dirname)
self.csv_dir = csv_dir
flist = (
os.path.join(csv_dir, os.path.split(dirname)[-1] + ".csv")
if flist is None
else flist
)
self.f_list = self._prepare(flist, patten, keymap)
if seed is not None:
random.seed(seed)
random.shuffle(self.f_list)
self.keymap = keymap
self.norm = norm
self.return_abspath = return_abspath
self.dataL = data_len
self.clipL = clip_len
assert data_len % clip_len == 0
assert data_len != -1 and clip_len != -1 or data_len == -1 and clip_len == -1
self.n_clip = int(data_len // clip_len)
self.align = align
self.ne_flag = ne_flag
self.dt_flag = dt_flag
self.fe_flag = fe_flag
self.tgt_fs = tgt_fs
self.logger.info(f" Get {dirname} {len(self.f_list)} files.")
@property
def dirname(self):
return str(self.dir)
def _prepare(
self, fname: Optional[str], patten: str, keymap: Tuple[str, str, str]
) -> List:
"""
fname: file path of a file list
"""
if fname is not None and os.path.exists(fname):
f_list = load_f_list(fname, str(self.dir))
self.logger.info(f"Load flist {fname}")
else:
self.logger.info(f"Regenerating flist {fname} not exist.")
f_list = []
f_mic_list = list(map(str, self.dir.glob(patten)))
for f_mic in f_mic_list:
dirp, f_mic_name = os.path.split(f_mic)
f_ref = f_mic_name.replace(keymap[0], keymap[1])
f_ref = os.path.join(dirp, f_ref)
f_sph = f_mic_name.replace(keymap[0], keymap[2])
f_sph = os.path.join(dirp, f_sph)
f_list.append((f_mic, f_ref, f_sph))
save_f_list(fname, f_list, str(self.dir)) if fname is not None else None
return f_list
def __len__(self):
return len(self.f_list) * self.n_clip
def _split(self, data, fs, slice_idx):
st = fs * slice_idx * self.clipL
ed = st + fs * self.clipL if self.clipL != -1 else None
return data[st:ed]
def __getitem__(self, index) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
idx, slice_idx = index // self.n_clip, index % self.n_clip
f_mic, f_ref, f_sph = self.f_list[idx]
# print("##", idx, index, f_mic)
dirp = os.path.dirname(f_mic)
dirname = Path(dirp)
if any(item in dirname.parts for item in self.ne_flag):
cond = AECTrunk.NE
elif any(item in dirname.parts for item in self.fe_flag):
cond = AECTrunk.FE
elif any(item in dirname.parts for item in self.dt_flag):
cond = AECTrunk.DT
else:
raise RuntimeError("Scenario is not specified.")
d_mic, fs_1 = audioread(f_mic, sub_mean=True, target_level=self.norm)
d_ref, fs_2 = audioread(f_ref, sub_mean=True, target_level=self.norm)
d_sph, fs_3 = audioread(f_sph, sub_mean=True, target_level=self.norm)
assert fs_1 == fs_2 == fs_3
if self.align is True:
tau, _ = gcc_phat(d_mic, d_ref, fs=fs_1, interp=1)
tau = max(0, int((tau - 0.001) * fs_1))
d_ref = np.concatenate([np.zeros(tau), d_ref], axis=-1, dtype=np.float32)[
: d_mic.shape[-1]
]
d_mic = self._split(d_mic, fs_1, slice_idx)
d_ref = self._split(d_ref, fs_2, slice_idx)
d_sph = self._split(d_sph, fs_3, slice_idx)
return (
torch.from_numpy(d_mic).float(),
torch.from_numpy(d_ref).float(),
torch.from_numpy(d_sph).float(),
torch.tensor(cond).int(),
)
def __iter__(self):
self.pick_idx = 0
return self
def __next__(
self,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor], str]:
"""used for predict api"""
if self.pick_idx >= len(self.f_list):
raise StopIteration
mic_fname, ref_fname, sph_fname = self.f_list[self.pick_idx]
d_mic, fs_1 = audioread(mic_fname, sub_mean=True, target_level=self.norm)
d_ref, fs_2 = audioread(ref_fname, sub_mean=True, target_level=self.norm)
try:
d_sph, _ = audioread(sph_fname, sub_mean=True, target_level=self.norm)
except Exception as e:
d_sph = None
assert fs_1 == fs_2
if fs_1 != self.tgt_fs:
d_mic = librosa.resample(d_mic, orig_sr=fs_1, target_sr=self.tgt_fs)
d_ref = librosa.resample(d_ref, orig_sr=fs_2, target_sr=self.tgt_fs)
if self.align is True:
tau, _ = gcc_phat(d_mic, d_ref, fs=fs_1, interp=1)
tau = max(0, int((tau - 0.001) * fs_1))
d_ref = np.concatenate([np.zeros(tau), d_ref], axis=-1, dtype=np.float32)[
: d_mic.shape[-1]
]
self.pick_idx += 1
fname = (
mic_fname
if self.return_abspath
else str(Path(mic_fname).relative_to(self.dir.parent))
)
N = min(len(d_ref), len(d_mic))
return (
torch.from_numpy(d_mic[:N]).float()[None, :],
torch.from_numpy(d_ref[:N]).float()[None, :],
torch.from_numpy(d_sph[:N]).float()[None, :] if d_sph is not None else None,
fname,
)
class CHiMe3(Dataset):
"""
subdir: train, test, dev
"""
def __init__(
self,
dirname,
subdir: str = "train",
nlen: float = 0.0,
min_len: float = 0.0,
fs: int = 16000,
flist: Optional[str] = None,
csv_dir: str = "manifest",
seed: Optional[int] = None,
norm: Optional[int] = None,
return_abspath: bool = False,
) -> None:
super().__init__()
self.dir = Path(dirname) / "data" / "audio" / "16kHz" / "isolated" / subdir
if subdir == "train":
self.clean_dir = self.dir / "tr05_org"
self.pattern = ("(CAF|PED|STR|BUS).CH1.wav", "ORG.wav")
elif subdir == "test":
self.clean_dir = self.dir / "et05_CH0"
self.pattern = ("(CAF|PED|STR|BUS).CH1.wav", "BTH.CH0.wav")
# self.clean_dir = self.dir / "et05_bth"
# self.pattern = ("(CAF|PED|STR|BUS).CH1.wav", "BTH.CH5.wav")
elif subdir == "dev":
self.clean_dir = self.dir / "dt05_CH0"
self.pattern = ("(CAF|PED|STR|BUS).CH1.wav", "BTH.CH0.wav")
else:
raise RuntimeError(f"{subdir} not supported.")
self.logger = get_logger(f"{dirname}-{subdir}")
self.csv_dir = csv_dir
self.N = int(nlen * fs)
self.minN = int(min_len * fs)
flist = (
os.path.join(csv_dir, os.path.split(dirname)[-1] + f"-{subdir}.csv")
if flist is None
else flist
)
self.f_list = self._prepare(flist)
if seed is not None:
random.seed(seed)
random.shuffle(self.f_list)
self.norm = norm
self.return_abspath = return_abspath
self.logger.info(f"dirname {str(self.dir)} {len(self.f_list)} files.")
@property
def dirname(self):
return str(self.dir)
def _rearange(self, flist):
f_list = []
for f, nlen in flist:
if self.N != 0 and self.minN != 0:
st = 0
nlen = int(nlen)
if nlen < self.minN:
continue
while nlen - st >= self.N:
f_list.append({"f": f, "start": st, "end": st + self.N, "pad": 0})
st += self.N
if nlen - st >= self.minN:
f_list.append(
{"f": f, "start": st, "end": nlen, "pad": self.N - (nlen - st)}
)
else:
f_list.append({"f": f, "start": 0, "end": int(nlen), "pad": 0})
return f_list
def _sort(self, flist: List) -> List:
l = []
for f in tqdm(flist, ncols=80, leave=False):
d, _ = audioread(f[0], sub_mean=True)
l.append(len(d))
tmp = zip(flist, l)
flist = sorted(tmp, key=lambda x: x[-1], reverse=True)
# flist, l = zip(*tmp)
return flist
def _prepare(self, fname: Optional[str]) -> List:
"""
fname: file path of a file list
"""
if fname is not None and os.path.exists(fname):
self.logger.info(f"Load flist {fname}")
f_list = load_f_list_len(fname, str(self.dir))
else:
self.logger.info(f"Regenerating flist {fname}.")
f_list = []
for f in self.dir.iterdir():
if not f.is_dir() or not f.match("*simu"):
continue
# searching simu directory
ch1 = list(map(str, f.rglob("*CH1.wav")))
f_list += [
(
x,
x.replace("CH1.wav", "CH2.wav"),
x.replace("CH1.wav", "CH3.wav"),
x.replace("CH1.wav", "CH4.wav"),
x.replace("CH1.wav", "CH5.wav"),
x.replace("CH1.wav", "CH6.wav"),
re.sub(
*self.pattern,
os.path.join(str(self.clean_dir), os.path.split(x)[-1]),
),
)
for x in ch1
]
f_list = self._sort(f_list)
save_f_list_len(fname, f_list, str(self.dir)) if fname is not None else None
return self._rearange(f_list)
def __len__(self):
return len(self.f_list)
def __getitem__(self, index) -> Tuple[torch.Tensor, torch.Tensor]:
el = self.f_list[index]
f1, f2, f3, f4, f5, f6, f_sph = el["f"]
st, ed, pd = el["start"], el["end"], el["pad"]
d1, _ = audioread(f1, target_level=self.norm)
d2, _ = audioread(f2, target_level=self.norm) # T,
d3, _ = audioread(f3, target_level=self.norm)
d4, _ = audioread(f4, target_level=self.norm)
d5, _ = audioread(f5, target_level=self.norm)
d6, _ = audioread(f6, target_level=self.norm)
d_sph, _ = audioread(f_sph, target_level=self.norm)
d1 = np.pad(d1[st:ed], (0, pd), "constant", constant_values=0)
d2 = np.pad(d2[st:ed], (0, pd), "constant", constant_values=0)
d3 = np.pad(d3[st:ed], (0, pd), "constant", constant_values=0)
d4 = np.pad(d4[st:ed], (0, pd), "constant", constant_values=0)
d5 = np.pad(d5[st:ed], (0, pd), "constant", constant_values=0)
d6 = np.pad(d6[st:ed], (0, pd), "constant", constant_values=0)
d_sph = np.pad(d_sph[st:ed], (0, pd), "constant", constant_values=0)
d_mic = np.stack([d1, d2, d3, d4, d5, d6], axis=-1)
return torch.from_numpy(d_mic).float(), torch.from_numpy(d_sph).float()
def __iter__(self):
self.pick_idx = 0
return self
def __next__(self) -> Tuple[torch.Tensor, torch.Tensor, str]:
"""used for predict api
return: data, relative path
"""
if self.pick_idx < len(self.f_list):
el = self.f_list[self.pick_idx]
f1, f2, f3, f4, f5, f6, f_sph = el["f"]
st, ed, pd = el["start"], el["end"], el["pad"]
d1, _ = audioread(f1, target_level=self.norm)
d2, _ = audioread(f2, target_level=self.norm)
d3, _ = audioread(f3, target_level=self.norm)
d4, _ = audioread(f4, target_level=self.norm)
d5, _ = audioread(f5, target_level=self.norm)
d6, _ = audioread(f6, target_level=self.norm)
d_sph, _ = audioread(f_sph, target_level=self.norm)
d1 = np.pad(d1[st:ed], (0, pd), "constant", constant_values=0)
d2 = np.pad(d2[st:ed], (0, pd), "constant", constant_values=0)
d3 = np.pad(d3[st:ed], (0, pd), "constant", constant_values=0)
d4 = np.pad(d4[st:ed], (0, pd), "constant", constant_values=0)
d5 = np.pad(d5[st:ed], (0, pd), "constant", constant_values=0)
d6 = np.pad(d6[st:ed], (0, pd), "constant", constant_values=0)
d_sph = np.pad(d_sph[st:ed], (0, pd), "constant", constant_values=0)
data = np.stack([d1, d2, d3, d4, d5, d6], axis=-1)
self.pick_idx += 1
fname = (
f1
if self.return_abspath
else str(Path(f1).relative_to(self.dir.parent))
)
return (
torch.from_numpy(data).float()[None, :],
torch.from_numpy(d_sph).float()[None, :],
fname,
)
else:
raise StopIteration
def clip_to_shortest(batch: List):
batch.sort(key=lambda x: x[0].shape[-1], reverse=True)
for x in batch:
print(x[0].shape, x[1].shape)
print("done")
def pad_to_longest(batch):
"""
batch: [(data, label), (...), ...], B,T,C
the input data, label must with shape (T,C) if time domain
"""
batch.sort(key=lambda x: x[0].shape[0], reverse=True) # data length
seq_len = [d.size(0) for d, _ in batch]
data, label = zip(*batch) # B,T,C
data = pad_sequence(data, batch_first=True).float()
label = pad_sequence(label, batch_first=True).float()
# data = pack_padded_sequence(data, seq_len, batch_first=True, enforce_sorted=True)
return data, label, torch.tensor(seq_len)
if __name__ == "__main__":
# from torchmetrics.functional.audio import signal_noise_ratio as SDR
from torchmetrics.functional.audio import signal_distortion_ratio as SDR
from tqdm import tqdm
import fast_bss_eval
from pesq import pesq
# dset = AECTrunk(
# "/home/deepnetni/trunk/gene-AEC-train-100-30",
# flist="list.csv",
# patten="**/*mic.wav",
# keymap=("mic", "ref", "sph"),
# align=True,
# )
# dset = NSTrunk(
# "/home/deepnetni/trunk/vae_dns_p07",
# flist="list.csv",
# patten="**/*_nearend.wav",
# # keymap=("nearend.wav", "target.wav"),
# clean_dirname="/home/deepnetni/trunk/vae_dns",
# )
# dset = CHiMe3(
# "/home/deepnetni/trunk/CHiME3",
# subdir="train",
# nlen=5.0,
# min_len=1.0,
# )
dset = CHiMe3(
"E:\datasets\CHiME3",
subdir="test",
)
train_loader = DataLoader(
dset,
batch_size=1,
pin_memory=True,
shuffle=True,
collate_fn=pad_to_longest,
)
sdr_l = []
pesq_sc = []
for mic, sph, nlen in tqdm(train_loader):
mic = mic[..., 4]
sdr, sir, sar, perm = fast_bss_eval.bss_eval_sources(sph.numpy(), mic.numpy())
sdr_l.append(sdr)
# sdr_l.append(SDR(preds=mic, target=sph, zero_mean=True))
# pesq_sc.append(pesq(16000, sph[0].numpy(), mic[0].numpy(), "wb"))
print(np.array(sdr_l).mean())
# print(np.array(pesq_sc).mean())
# rnn = nn.LSTM(input_size=6, hidden_size=10, num_layers=1, batch_first=True)
# out, (h, c) = rnn(inp)
# out, len = pad_packed_sequence(out, batch_first=True)
# print(out.shape)